AGASA Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.

Slides:



Advertisements
Similar presentations
AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
Advertisements

Antonis Leisos KM3NeT Collaboration Meeting the calibration principle using atmospheric showers the calibration principle using atmospheric showers Monte.
JNM Dec Annecy, France The High Resolution Fly’s Eye John Matthews University of Utah Department of Physics and High Energy Astrophysics Institute.
Stereo Spectrum of UHECR Showers at the HiRes Detector  The Measurement Technique  Event Reconstruction  Monte Carlo Simulation  Aperture Determination.
Application for Pierre Auger Observatory.
Results from the Telescope Array experiment H. Tokuno Tokyo Tech The Telescope Array Collaboration 1.
GZK Horizons and the Recent Pierre Auger Result on the Anisotropy of Highest-energy Cosmic Ray Sources Chia-Chun Lu Institute of Physics, National Chiao-Tung.
Cosmic Rays with the LEP detectors Charles Timmermans University of Nijmegen.
Use of floating surface detector stations for the calibration of a deep-sea neutrino telescope G. Bourlis, N. A. B. Gizani, A. Leisos, A. G. Tsirigotis,
Recent Results for Small-Scale Anisotropy with HiRes Stereo Data Chad Finley Columbia University HiRes Collaboration Rencontres de Moriond 17 March 2005.
An update on the High Energy End of the Cosmic Ray spectra M. Ave.
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
Combined analysis of the spectrum and anisotropies of UHECRs Daniel De Marco Bartol Research Institute University of Delaware.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
March 2005E. Armengaud - Moriond Search methods for UHECR anisotropies within the Pierre Auger Observatory Eric Armengaud (APC/IAP - Paris) for the Auger.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
The Highest Energy Cosmic Rays Two Large Air Shower Detectors
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
TAUP 2005: Zaragoza Observations of Ultra-high Energy Cosmic Rays Alan Watson University of Leeds Spokesperson for Pierre Auger Observatory
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
Probing Extreme Universe through Ultra-High Energy Cosmic Ray Yamamoto Tokonatsu Konan University, Japan Introduction UHECR observation Recent results.
La nascita della astronomia dei raggi cosmici? Indicazioni dall' Osservatorio P. Auger Aurelio F. Grillo Teramo 8/05/08.
Paul Sommers Penn State Brookhaven, January 29, 2008 Astroparticle Physics.
Konstantin Belov. GZK-40, Moscow. Konstantin Belov High Resolution Fly’s Eye (HiRes) Collaboration GZK-40. INR, Moscow. May 17, measurements by fluorescence.
Ultra-High Energy Cosmic Ray Research with the Pierre Auger Observatory Methods, Results, What We Learn, and expansion to Colorado Bill Robinson.
Spectrum, Composition, and Arrival Direction of Ultra High Energy Cosmic Rays as Measured by HiRes John Belz for the High Resolution Fly’s Eye.
Size and Energy Spectra of incident cosmic radiation obtained by the MAKET - ANI surface array on mountain Aragats. (Final results from MAKET-ANI detector)‏
Very Large Volume Neutrino Telescope Workshop Athens 13 – 15 October 2009 Recent Results on Ultra High Energy Cosmic Rays Alan Watson University of Leeds.
Preliminary MC study on the GRAND prototype scintillator array Feng Zhaoyang Institute of High Energy Physics, CAS, China GRAND Workshop, Paris, Feb. 015.
Contributions of the University of Bucharest to the study of high energy cosmic rays in the framework of the KASCADE-Grande experiment Octavian Sima Faculty.
Yakutsk results: spectrum and anisotropy M.I. Pravdin for Yukutsk Collaboration Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin.
Hajime Takami Institute for the Physics and Mathematics of the Universe, the University of Tokyo High Energy Astrophysics KEK, Tsukuba, Nov. 11,
Propagation of Ultra-high Energy Cosmic Rays in Local Magnetic Fields Hajime Takami (Univ. of Tokyo) Collaborator: Katsuhiko Sato (Univ. of Tokyo, RESCEU)
Telescope Array Experiment: Status and Prospects Pierre Sokolsky University of Utah.
Ultra High Energy Cosmic Rays -- Origin and Propagation of UHECRs -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Status and first results of the KASCADE-Grande experiment
Properties of giant air showers and the problem of energy estimation of initial particles M.I. Pravdin for Yukutsk Collaboration Yu.G. Shafer Institute.
AGASA Results Masahiro Teshima for AGASA collaboration
May 31, 2004Benjamin Stokes CRIS2004 HiRes The High Resolution Fly’s Eye (HiRes) Experiment Collaboration: 4 4 Columbia University 4 University of Adelaide.
Ultra High Energy Cosmic Rays at Pierre Auger Observatory
Hadronic interaction studies with the ARGO-YBJ experiment (5,800 m 2 ) 10 Pads (56 x 62 cm 2 ) for each RPC 8 Strips (6.5 x 62 cm 2 ) for each Pad ( 
for the Pierre Auger Collaboration
The Auger Observatory for High-Energy Cosmic Rays G.Matthiae University of Roma II and INFN For the Pierre Auger Collaboration The physics case Pierre.
Temporal and spatial structure of the Extensive Air Shower front with the ARGO- YBJ experiment 1 - INFN-CNAF, Bologna, Italy 2 - Università del Salento.
The primary energy spectrum measured by using the time structure of extensive air showers with compact EAS arrays (ID441) H. Matsumoto 1, A. Iyono 1, I.
The KASCADE-Grande Experiment: an Overview Andrea Chiavassa Universita’ di Torino for the KASCADE-Grande Collaboration.
Cosmic Rays from to eV. Open Problem and Experimental Results. (KASCADE-Grande view) Very High Energy Phenomena in the Universe XLIV th Rencontres.
1 CEA mercredi 26 novembre 2007 Latest news from the Pierre Auger Observatory Nicolas G. Busca - APC - Paris 7.
Current Physics Results Gordon Thomson Rutgers University.
AMIGA – A direct measurement of muons in Pierre Auger Observatory
Juan Carlos Arteaga-Velázquez for the KASCADE-Grande Collaboration Institute of Physics and Mathematics Universidad Michoacana, Mexico 132nd ICRCJ.C.Arteaga.
NEVOD-DECOR experiment: results and future A.A.Petrukhin for Russian-Italian Collaboration Contents MSU, May 16, New method of EAS investigations.
AGASA Results Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
Lateral Distribution Functions of Extensive Air Showers Abstract The energy is among the characteristics of Ultra High Energy Cosmic Rays (E>5 x
High Energy Cosmic Rays The Primary Particle Types Paul Sommers for Alan Watson Epiphany Conference, Cracow January 10, 2004.
Space-time structure of signals in scintillation detectors of EAS L.G. Dedenko, G.F. Fedorova, T.M. Roganova and D.A. Podgrudkov.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
AGASA results Anisotropy of EHE CR arrival direction distribution M. Teshima ICRR, U of Tokyo.
A Measurement of the Ultra-High Energy Cosmic Ray Spectrum with the HiRes FADC Detector (HiRes-2) Andreas Zech (for the HiRes Collaboration) Rutgers University.
Search for Anisotropy with the Pierre Auger Observatory Matthias Leuthold for the Pierre Auger Collaboration EPS Manchester 2007.
Ultra High Energy Cosmic Rays -- observational results -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July
Cosmic Ray Composition Primary cosmic particles collide with atoms in the Earth's atmosphere and produce a cascade of short lived particles, which can.
Cosmic Rays at Extreme Energies The Pierre Auger Observatory
Ultra High Energy Cosmic Ray Spectrum Measured by HiRes Experiment
Telescope Array Experiment Status and Prospects
The Aperture and Precision of the Auger Observatory
Studies and results at Pierre Auger Observatory
Presentation transcript:

AGASA Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration

AGASA Cosmic Ray Energy Spectrum P γ3K Δ N π GZK mechanism AGASA Energy Spectrum Super GZK part. ~1/km 2 century

AGASA A keno G iant A ir S hower A rray operated in 1991~ Electron Det. 27 Muon Det. 0 4km Closed in Jan 2004

AGASA Linearity check after dismantling detectors in 2004 Feb At Akeno Observatory Central building in 2004 Jan

AGASA Detector Calibration in AGASA experiment Detector Gain by muons in each run Cable delay (optic fiber cable) Gain as a function of time (11years data) Accuracy of 100ps by measuring the round trip time in each run Detector Position Survey from Airplane Δ X, Δ Y= 0.1m, Δ Z= 0.3m Linearity as a function of time (11years data)

AGASA Detector Simulation (GEANT-3) Detector Housing (Fe 0.4mm) Detector Box (Fe 1.6mm) Scintillator (50mm) Earth (Backscattering) vertical θ = 60deg Detector Response Energy spectra of shower particles

AGASA Energy Determination Local density at 600m Good energy estimator by M.Hillas Good energy estimator by M.Hillas E=2.1x10 20 eV

AGASA The Highest Energy Event 2.5 x10 20 eV on 10 May 2001

AGASA Attenuation curve S(600) vs N ch eV Proton Atmospheric depth

AGASA S600 Intrinsic fluctuation Proton Iron

AGASA Energy Resolution 30% 25% mainly due to measurement errors (particle density measurement and core location determination) not due to shower fluctuation

AGASA The Conversion from S600 to Energy Muon/Neutrino Ele. Mag

AGASA Major Systematics in AGASA astro-ph/ Detector Detector Absolute gain± 0.7% Detector Absolute gain± 0.7% Detector Linearity± 7% Detector Linearity± 7% Detector response(box, housing)± 5% Detector response(box, housing)± 5% Energy Estimator S(600) Interaction model, P/Fe, Height±15% Interaction model, P/Fe, Height±15% Air shower phenomenology Lateral distribution function± 7% Lateral distribution function± 7% S(600) attenuation± 5% S(600) attenuation± 5% Shower front structure ± 5% Shower front structure ± 5% Delayed particle(neutron) ± 5% Delayed particle(neutron) ± 5% Total ± 20%

AGASA Energy Spectrum by AGASA (θ<45) 11 obs. / 1.3~2.6 exp. 5.1 x m 2 s sr

AGASA Critical review of energy estimation and spectrum Acceptance of Array AGASA fast simulation (based on empirical formula and toy simulation) AGASA fast simulation (based on empirical formula and toy simulation) Based on CORSIKA M.C. Based on CORSIKA M.C. Essentially acceptance is saturated  No difference Essentially acceptance is saturated  No difference Lateral distribution of showers Lateral distribution determined by experiment Lateral distribution determined by experiment Lateral distribution estimated by Corsika M.C. Lateral distribution estimated by Corsika M.C.  No difference  No difference Attenuation of S(600) Attenuation curve determined by experiment Attenuation curve determined by experiment Attenuation curve estimated by Corsika M.C. Attenuation curve estimated by Corsika M.C. There is systematic difference of 10-20% There is systematic difference of 10-20%

AGASA S600 attenuation with recent Corsika Overestimation factor compared with Corsika We are very close to S600 maximum at eV

AGASA Preliminary spectra with recent Corsika No difference in Models and Compositions Energy shift to lower direction ~10% at eV ~15% at eV Above eV 11events  5~6 events Featureless spectrum very close to E -3 P-SIBYLL (above eV) γ = 2.95 ±0.08 (χ 2 / NDF = 8.5/11) Fe-QGSJET (above eV) γ = 2.90 ± 0.08 (χ 2 /NDF = 8.5/11) ~10% ~15%

AGASA Arrival Direction Distribution >4x10 19 eV zenith angle 4x10 19 eV zenith angle <50deg. Isotropic in the large scale  Extra-Galactic origin But, Clusters in small scale ( Δθ< 2.5deg) 1triplet and 6 doublets (2.0 doublets are expected from random) 1triplet and 6 doublets (2.0 doublets are expected from random)

AGASA Space Angle Distribution of Arbitrary two events >4x10 19 eV Normalized sigma 3.2 sigma excess

AGASA Arrival Direction Distribution >10 19 eV

AGASA Space Angle Distribution Log E>19.6 Log E>19.4 Log E>19.2Log E>19.0

AGASA AGASA Triplet + HiRes These events are on the supergalactic plane Arp299: 40Mpc Colliding galaxy NGC3610: 33Mpc Merger Remnant NGC3613: 36Mpc AGN Remnant MAGIC made the observation of these objects, Results will come in ICRC07

AGASA ρ μ (1000) distribution

AGASASummary Super GZK particles Preliminary study with recent CORSIKA Preliminary study with recent CORSIKA If we evaluate energies with the recent CORSIKA Energy scale shift down by ~10% at eV and by ~15% at eV Energy scale shift down by ~10% at eV and by ~15% at eV 11 events above eV / 1.3~2.6 expected  5~6 events / 1.0~1.9 expected 11 events above eV / 1.3~2.6 expected  5~6 events / 1.0~1.9 expected Small scale anisotropy of UHECR The arrival direction of UHECRs is uniform in large scale The arrival direction of UHECRs is uniform in large scale But AGASA data shows clusters, 1 triplets and 6 doublets  granularity But AGASA data shows clusters, 1 triplets and 6 doublets  granularity Source density ~10 -5 /Mpc 3 ~ density of AGNs Source density ~10 -5 /Mpc 3 ~ density of AGNs