(not visible on the picture)

Slides:



Advertisements
Similar presentations
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advertisements

Fill in missing numbers or operations
TU Darmstadt Inertial Confinement Fusion Dieter H.H. Hoffmann TU / GSI Darmstadt 300. WE-Heraeus Seminar ENERGIEFORSCHUNG Mai 2003.
FAIR accelerator R&D Oliver Kester GSI Helmholtzzentrum für Schwerionenforschung Darmstadt and IAP Goethe-Universität Frankfurt.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Report from: the High Intensity Stable Beam Working Group HISB-WG Marie-Helene Moscatello (GANIL) Annamaria Porcellato (Legnaro) Uli Ratzinger (GSI) Faical.
Laboratoire Commun CEA/DSM-CNRS/IN2P3 Orsay June 4 th 2004 M-H MoscatelloHigh Intensity Stable Beams HIGH INTENSITY STABLE BEAMS -Available beams at GANIL.
FOM-Institute for Plasma Physics Rijnhuizen Association Euratom-FOM T E CT E C T E CT E C Carbon Chemical Erosion Yield Experiments in Pilot-PSI Jeroen.
/4/2010 Box and Whisker Plots Objective: Learn how to read and draw box and whisker plots Starter: Order these numbers.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
0 - 0.
1 1  1 =.
1  1 =.
2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt ShapesPatterns Counting Number.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Multi Beamlett Extraction Experiments and Sector Magnet Field Investigation.
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
£1 Million £500,000 £250,000 £125,000 £64,000 £32,000 £16,000 £8,000 £4,000 £2,000 £1,000 £500 £300 £200 £100 Welcome.
S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance.
Development of the FLNR Cyclotron Complex /2009 Priority 1 Dubna,
What is the ISOLDE cooler RFQ CB - ISCOOL H. Frånberg.
Adding Up In Chunks.
Machine Physics at ISIS Proton Meeting 24 th March 11 Dean Adams (On behalf of ISIS Accelerator Groups)
Benjamin Banneker Charter Academy of Technology Making AYP Benjamin Banneker Charter Academy of Technology Making AYP.
Addition 1’s to 20.
H – Ion Source Development at RAL & FNAL PASI Meeting, RAL 3 rd April 2013 Scott Lawrie & Dan Faircloth (RAL) Dan Bollinger (FNAL)
25 seconds left…...
Subtraction: Adding UP
Slippery Slope
Test B, 100 Subtraction Facts
Number bonds to 10,
We will resume in: 25 Minutes.
Mats Lindroos Will we ever do a beta-beam design study beyond the present CERN-Frejus baseline? Mats Lindroos.
Partial Products. Category 1 1 x 3-digit problems.
PSSA Preparation.
A proposal for a polarized 3 He ++ ion source with the EBIS ionizer for RHIC. A.Zelenski, J,Alessi, E.Beebe, A.Pikin BNL M.Farkhondeh, W.Franklin, A. Kocoloski,
Polarized 3He ++ ion source development for RHIC. Check the Bjorken Spin Sum Rule (the difference between the 1st moments of the proton and neutron spin.
Superconducting Ion Source Development in Berkeley
EuCARD 2nd ANNUAL MEETING, CNRS-Paris May 2011 ECR Ion Sources R&D at LPSC * - Grenoble T. Lamy J. Angot, M. Marie-Jeanne, T. Thuillier, P. Sortais.
Pascal Sortais – LPSC/SSI - SFP Porquerolles Institut of Nuclear Physics (INS) Institut des Sciences Nucléaires (ISN) Cosmology and Subatomic Physic.
Giovanni Ciavola I3 EURONS-2 COMPLECS Town Meeting, Sept. 19th, 2007, Helsinki 1 INFN - GSI - GANIL - LPSC - JYFL - KVI CERN - ATOMKI- TSL - NIPNE - IKF-
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
“Ultra Pure and High Intensity Multiply Charged Radioactive Ion Beams” Associated institutes: IPNS KEK, Japan S. Jeong, N. Imai, M. Oyaizu, H. Myiatake.
December 2007ESF-Workshop, Athens, Greece University of Jyväskylä, Department of Physics ECR ion source for the highly charged, intensive ion beams H.
New Progress of High Current Gasdynamic Ion Source
Vacuum Spark Ion Source: High Charge States Ion Beam E.M. Oks, G.Yu. Yushkov, A.G. Nikolaev, and V.P. Frolova High Current Electronics Institute, Siberian.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov.
ICIS2015 in NY Y.HIGURASHI Y. Higurashi (RIKEN Nishina center) 1.Introduction RIKEN RIBF and RIKEN 28GHz SC-ECRIS 2.Emittance measurements 1.4D.
Mats Lindroos Future R&D: beta-beam Mats Lindroos.
Indiana University Cyclotron Facility March, 2004 EIC WorkshopV.P.Derenchuk 1 Polarized Ion Sources V.Derenchuk, Ya.Derbenev, V.Dudnikov Second Electron-Ion.
Giovanni Ciavola, JRA-07 ISIBHI JRA-07 Ion Sources for Intense Beams of Heavy Ions (ISIBHI) EURONS PCC Meeting, Groningen, Holland, December 2006.
J. Bouchez CEA/DAPNIA NuFact 03 June 5,2003 BETA BEAMS : design update and physics reach Physics motivation Recent progress on design Expected performances.
Pekka Suominen 2010 CERN Plasma ion sources for radioactive molecular ion beams.
Vladimir ZORIN Institute of Applied Physics Nizhny Novgorod, Russia Additional Partner in EUROnu project ECR task: continuation of work with a 60 GHz ECR.
September 13, 2007 J. Alessi EBIS Project and EBIS as an ionizer for polarized He-3 ? Jim Alessi Work of E. Beebe, A. Pikin, A. Zelenski, A. Kponou, …
PS-ESS and LEBT State of the art Lorenzo Neri Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud.
H. Koivisto, EMILIE workshop, rd March 2016, GANIL, France Research of CB ECRIS plasma with the aid of injected 1+ beam H Koivisto 1, O Tarvainen.
JLEIC ion source: specifications, design, and R&D prospects
A BASELINE BETA-BEAM Mats Lindroos AB Department, CERN
60 GHz ECR Ion Source for RIB production
Future R&D: beta-beam Mats Lindroos Mats Lindroos.
FEBIAD ion source development efficiency improvement
INTC September 2002 ISOLDE Mats Lindroos Mats Lindroos.
PHOENIX 28 GHz / 1 KW / 15 ms UHF at 4 Hz
Presentation transcript:

(not visible on the picture) A new prototype of super buncher for RI ~ 100 % efficiency No energy dispersion Beta- beam facility (not visible on the picture) Valve as rapid as possible CW input of RI

ECR technique for RIB production 1 – « Slow ionization » Low density / long confinement / slow rising time / 1+ ionization / charge breeding / bunching / high efficiency 2 – « Rapid ionization »  Higher density / shorter confinement / faster rising time High current / short pulsed development 3 – « Super bunching and ionization efficiency »  With very high density plasma, is an « ECR-Duoplasmatron » possible ?

Ion production of gaseous element To pump To beam or metallic ion inside a very high temperature cavity To pump i.e. defined by the conductance of the extraction hole Dominant if ioni >> ext Atoms diffusion in molecular regime recycling 1+ To beam i.e. defined by the « ionic pumping » of the plasma Dominant if ioni  ext plasma Ionization and diffusion in a magnetized plasma Target Ion source

Ionization time and mean free path of ionization vTi ne< ioni ve > ioni Fext  1-3 mm A+ Ti = 1/10 eV  VTi = 7 104 cm/s A° ne , Te Te = 50 eV  VTe = 4 106 cm/s ioni  2 10-16 cm-2 (from 0+ to Ar+)  some cm < ioni ve >  10-7 cm3/s 7 cm at ne  1011 cm-3  2.45 GHz 10 µs ioni = tioni = 0.7 cm at ne  1012 cm-3  10 GHz 1 µs 0.07 cm at ne  1013 cm-3  28 GHz 0.1 µs 100 % efficiency and rapid ionization only if ioni < Fext so ne >  1013 e/cm-3

1+ ionization of ions with ECR ion source From Fredrik Wenander, Jacques Lettry, Nicolas Chritin, Ermanno Barbero, W. Pirkl, ISOLDE, CERN and G. Gaubert, P. Jardin, R. Leroy, et al., GANIL, Caen GANIL / ISOLDE MONOECRIS 1+ 2.45 GHz GANIL / Picogan 10 GHz the smallest ECRIS : L, F  3 cm  release (50%) He ~ 20% 20 ms Ne ~ 35 % 30 ms Ar ~ 95% 40 ms Kr ~ 95% 40 ms  ( Ar ) ~ 70%

ECR Charge breeding for  CW operation Direct injection of atoms (gaseous ions only) simple confinement GANIL Nanogan /SPIRAL hNe1+ ® Ne6+  10 % trelease  tens of ms Direct injection of 1+ beams (gaseous or metallic ions) sophisticated confinement PHOENIX – ISN/SSI n+ Faraday Cup Double Einzel lens 1+ Faraday Cup 1+ spectrometer hNe1+ ® Ne6+  10 % trelease  tens of ms PHOENIX Booster n+ spectrometer Vertical pulsation Release : i .e. recycling + magnetic trapping 1+ source

ECRIT charge breeding and bunching From : T. Lamy et al., Institut des Sciences Nucléaires UJF-IN2P3-CNRS, Grenoble, France R.F. Power Rb1+ Injection Rbn+ Extracted tH.F. OFF ON t tinj Standard Values :  t H.F.  300 ms to 2 s  t inj  20 ms to t H.F.  t  0 to 1.5 s h1+®15+ = 2.2 % (Rb ions) i.e. half of the CW 1 - Efficiency measurement of afterglow process 2 - Promizing results for ms and more, bunches of metallic ions 3 - Afterglow time difficult to control

Very short confinement (some µs) Very poor gas efficiency CERN duoplasmatron for H+ production the perfect time structure for the synchrotrons mA µs Very good time structure Very short confinement (some µs) Very poor gas efficiency

PHOENIX 28 GHz : high current extraction (Xenon) From : T. Thuillier et al., Institut des Sciences Nucléaires UJF-IN2P3-CNRS, Grenoble, France 35 mm Faraday Cup Xe17+ beam 3D field map of the 90° Bending magnet Xe18+ beam 10.4 emA (Xe20+ 0.6 emA) 3D field map of the solenoid 12.5 emA (IFC1) 3D source extraction field and magnetic fringe field of the source 15 emA (IHV)

PHOENIX 28 GHz : high current extraction (Lead) From : T. Thuillier et al., Institut des Sciences Nucléaires UJF-IN2P3-CNRS, Grenoble, France 10 emA total current (preliminary) 300 µs pulse Shorter and higher afterglow than with ECR4-14.5 GHz CERN  7 ( 10 ?)

28 GHz experiment at grenoble ISN/SSI From : T. Thuillier et al., Institut des Sciences Nucléaires UJF-IN2P3-CNRS, Grenoble, France 1 – Proof of the high frequency / high density effect 2 – Emittance and efficiency to be measured 3 - Afterglow shorter but always difficult to control (0.3-1 ms) 28 GHz /10 KW PHOENIX 28 GHz The new (and stable) 28 GHz /10 KW ISN gyrotron from GYCOM Inc. (Nizhny Novgorod , Russia) 5 µs shutdown of the full power

SMIS 37.5 GHz with optical coupling for very high intensity pulsed current From : S.V. Golubev, D.A. Mansfeld, S.V. Razin, V.A. Skalyga, A.V. Vodopyanov, V.G. Zorin, Institute of Applied Physics, Russian Academy of Sciences, Nizhniy Novgorod, Russia, R. Geller, T. Lamy, P. Sortais, T. Thuillier Institut des Sciences Nucléaires UJF-IN2P3-CNRS, Grenoble, France Optical coupling of the UHF power : up to 100 KW / 1 ms each 20 s Very simple magnetic system

SMIS 37.5 GHz very high current density production From : S.V. Golubev, D.A. Mansfeld, S.V. Razin, V.A. Skalyga, A.V. Vodopyanov, V.G. Zorin, Institute of Applied Physics, Russian Academy of Sciences, Nizhniy Novgorod, Russia, R. Geller, T. Lamy, P. Sortais, T. Thuillier Institut des Sciences Nucléaires UJF-IN2P3-CNRS, Grenoble, France Rising time  100 µs 30 emA / F 3 mm total current 200-300 mAe/cm2 1013 part. during 100 µs with Multi Charged Ions To be done : beam matching (100 KV duoplasmatron extractor) efficiency measurement with pulsed valve upgrade to 60 or 90 GHz with pulsed or SC coils possible

60-90 GHz « ECR Duoplasmatron » for gaseous RIB 1 – To bunch the gas in short time ~ > 20 µs 2 – To ionize (>1+) with a time smaller than the effusion time ne  1014 e/cm-3  60 GHz ECR discharge + strong axial magnetic field during the discharge (  2T) 3 – To deliver a beam with a repetition rate compatible with the lifetime of the ions

60-90 GHz « ECR Duoplasmatron » for gaseous RIB 2.0 – 3.0 T pulsed coils or SC coils Very high density magnetized plasma ne ~ 1014 cm-3 Very small plasma chamber F ~ 20 mm / L ~ 5 cm Target Arbitrary distance if gas Rapid pulsed valve 1-3 mm 100 KV extraction 60-90 GHz / 10-100 KW 10 –200 µs /  = 6-3 mm optical axial coupling UHF window or « glass » chamber (?) 20 – 100 µs 20 – 200 mA 1012 to 1013 ions per bunch with high efficiency optical radial coupling (if gas only)

PHOENIX 28 GHz : afterglow control with Lead Pb 25+,24+,23+,22+ Pb 16+ Pb 14+ a.u. O4+ O3+ O2+ C+ N+ O+ UHF pulse 10 ms “pre – glow” bunch correlated with presure drop Ionic pumping during some hundreds of µs 0 ms

Simplification of the injection system New RFQ LINAC 3 PSB

Rapid ionization of RIB : future prospects 1 – ECRIS can supply either efficiency or pulsed currents ECRIS must supply efficiency AND pulsed currents 2 – 28 GHz / 10 KW preliminary tests could be done at ISN 3 – Possible extension to RIB of condensable elements and upgrade of the other metallic ion stable beams (Pb) next step of PHOENIX development 4 – Never start an heavy ion project without a strong preliminary ion source development program !