The standard error of the sample mean and confidence intervals How far is the average sample mean from the population mean? In what interval around mu.

Slides:



Advertisements
Similar presentations
A Sampling Distribution
Advertisements

Sampling: Final and Initial Sample Size Determination
Chapter 5 Introduction to Inferential Statistics.
T scores and confidence intervals using the t distribution.
The standard error of the sample mean and confidence intervals
t scores and confidence intervals using the t distribution
The standard error of the sample mean and confidence intervals
Chapter 5 Introduction to Inferential Statistics.
Topics: Inferential Statistics
Correlation 2 Computations, and the best fitting line.
Fall 2006 – Fundamentals of Business Statistics 1 Chapter 6 Introduction to Sampling Distributions.
Correlation 2 Computations, and the best fitting line.
Confidence intervals using the t distribution. Chapter 6 t scores as estimates of z scores; t curves as approximations of z curves Estimated standard.
1 The Basics of Regression Regression is a statistical technique that can ultimately be used for forecasting.
Chapter 4 Translating to and from Z scores, the standard error of the mean and confidence intervals Welcome Back! NEXT.
1 Hypothesis Testing In this section I want to review a few things and then introduce hypothesis testing.
Chapter 5 Introduction to Inferential Statistics.
Chapter 1 The mean, the number of observations, the variance and the standard deviation.
Chapter 1 The mean, the number of observations, the variance and the standard deviation.
Sampling We have a known population.  We ask “what would happen if I drew lots and lots of random samples from this population?”
Wednesday, October 3 Variability. nominal ordinal interval.
Chapter 1-6 Review Chapter 1 The mean, variance and minimizing error.
1 The Sample Mean rule Recall we learned a variable could have a normal distribution? This was useful because then we could say approximately.
T scores and confidence intervals using the t distribution.
Chapter 7 Probability and Samples: The Distribution of Sample Means
Chapter 11: Random Sampling and Sampling Distributions
QUIZ CHAPTER Seven Psy302 Quantitative Methods. 1. A distribution of all sample means or sample variances that could be obtained in samples of a given.
The standard error of the sample mean and confidence intervals How far is the average sample mean from the population mean? In what interval around mu.
1 Psych 5500/6500 Statistics and Parameters Fall, 2008.
Standard Error of the Mean
Chapter 6: Sampling Distributions
Confidence Intervals. Estimating the difference due to error that we can expect between sample statistics and the population parameter.
© Copyright McGraw-Hill CHAPTER 6 The Normal Distribution.
Sociology 5811: Lecture 7: Samples, Populations, The Sampling Distribution Copyright © 2005 by Evan Schofer Do not copy or distribute without permission.
Estimation Statistics with Confidence. Estimation Before we collect our sample, we know:  -3z -2z -1z 0z 1z 2z 3z Repeated sampling sample means would.
Introductory Statistics for Laboratorians dealing with High Throughput Data sets Centers for Disease Control.
A Sampling Distribution
Dan Piett STAT West Virginia University
Estimation of Statistical Parameters
Chapter 7 Statistical Inference: Confidence Intervals
1 Introduction to Estimation Chapter Concepts of Estimation The objective of estimation is to determine the value of a population parameter on the.
PARAMETRIC STATISTICAL INFERENCE
Smith/Davis (c) 2005 Prentice Hall Chapter Six Summarizing and Comparing Data: Measures of Variation, Distribution of Means and the Standard Error of the.
Chapter 7 Estimation Procedures. Basic Logic  In estimation procedures, statistics calculated from random samples are used to estimate the value of population.
Objectives The student will be able to: find the variance of a data set. find the standard deviation of a data set.
Dr. Serhat Eren 1 CHAPTER 6 NUMERICAL DESCRIPTORS OF DATA.
1 Chapter 7 Sampling Distributions. 2 Chapter Outline  Selecting A Sample  Point Estimation  Introduction to Sampling Distributions  Sampling Distribution.
8 Sampling Distribution of the Mean Chapter8 p Sampling Distributions Population mean and standard deviation,  and   unknown Maximal Likelihood.
LSSG Black Belt Training Estimation: Central Limit Theorem and Confidence Intervals.
STA Lecture 171 STA 291 Lecture 17 Chap. 10 Estimation – Estimating the Population Proportion p –We are not predicting the next outcome (which is.
Chapter 18: Sampling Distribution Models
1 Mean Analysis. 2 Introduction l If we use sample mean (the mean of the sample) to approximate the population mean (the mean of the population), errors.
Confidence Interval for a Single Proportion p-hat, not phat.
INFERENTIAL STATISTICS DOING STATS WITH CONFIDENCE.
Distributions of Sample Means. z-scores for Samples  What do I mean by a “z-score” for a sample? This score would describe how a specific sample is.
Sec 6.3 Bluman, Chapter Review: Find the z values; the graph is symmetrical. Bluman, Chapter 63.
Ex St 801 Statistical Methods Inference about a Single Population Mean (CI)
The accuracy of averages We learned how to make inference from the sample to the population: Counting the percentages. Here we begin to learn how to make.
1 Estimation Chapter Introduction Statistical inference is the process by which we acquire information about populations from samples. There are.
Monday, September 27 More basics.. _ “Life is a series of samples, you can infer the truth from the samples but you never see the truth.”
Sample Means. Parameters The mean and standard deviation of a population are parameters. Mu represents the population mean. Sigma represents the population.
Chapter Six Summarizing and Comparing Data: Measures of Variation, Distribution of Means and the Standard Error of the Mean, and z Scores PowerPoint Presentation.
Chapter 6: Sampling Distributions
GOVT 201: Statistics for Political Science
Chapter 6: Sampling Distributions
Distribution of the Sample Means
Chapter 18: Sampling Distribution Models
Statistics in Applied Science and Technology
Introduction to Sampling Distributions
How Confident Are You?.
Presentation transcript:

The standard error of the sample mean and confidence intervals How far is the average sample mean from the population mean? In what interval around mu can we expect to find 95% or 99% or sample means

An introduction to random samples When we speak about samples in statistics, we are talking about random samples. Random samples are samples that are obtained in line with very specific rules. If those rules are followed, the sample will be representative of the population from which it is drawn.

Random samples: Some principles In a random sample, each and every score must have an equal chance of being chosen each time you add a score to the sample. Thus, the same score can be selected more than once, simply by chance. (This is called sampling with replacement.) The number of scores in a sample is called “n.” Sample statistics based on random samples provide least squared, unbiased estimates of their population parameters.

The first way a random sample is representative of its population One way a random sample will be representative of the population is that the sample mean will be a good estimate of the population mean. Sample means are better estimates of mu than are individual scores. Thus, on the average, sample means are closer to mu than are individual scores.

The variance and the standard deviation are the basis for the rest of this chapter. In Chapter 1 you learned to compute the average squared distance of individual scores from mu. We called it the variance. Taking a square root, you got the standard deviation. Now we are going to ask a slightly different question and transform the variance and standard deviation in another way.

As you add scores to a random sample Each randomly selected score tends to correct the sample mean back toward mu If we have several samples drawn from a single population, as we add scores to each sample, each sample mean gets closer to mu. Since they are all getting closer to mu, they will also be getting closer to each other.

As you add scores to a random sample – larger vs. smaller samples The larger the random samples, the closer they will be to mu, on the average. The larger the random samples, the closer they will be to each other, on the average.

Let’s see how that happens Population is 1320 students taking a test.  is 72.00,  = 12 Let’s randomly sample one student at a time and see what happens.We’ll create a random sample with 8 students’ scores in the sample.

Test Scores FrequencyFrequency score Sample scores: Standard deviations Scores Mean 87 Means:

How much closer to mu does the sample mean get when you increase n, the size of the sample? (1) The average squared distance of individual scores is called the variance. You learned to compute it in Chapter 1. The symbol for the mean of a sample is the letter X with a bar over it.We will write that as X-bar.

How much closer to mu does the sample mean get when you increase n, the size of the sample? (2) The average squared distance of sample means from mu is the average squared distance of individual scores from mu divided by n, the size of the sample. Let’s put that in a formula sigma 2 X-bar = sigma 2 /n

The standard error of the sample mean As you know, the square root of the variance is called the standard deviation. It is the average unsquared distance of individual scores from mu. The average unsquared distance of sample means from mu is the square root of sigma 2 X-bar The square root of sigma 2 X-bar = sigma X-bar. sigma X-bar is called the standard error of the sample mean or, more briefly, the standard error of the mean. Here are the formulae sigma 2 X-bar = sigma 2 /n sigma X-bar = sigma/

The standard error of the mean Let’s translate the formula into English, just to be sure you understand it. Here is the formula again: sigma X-bar = sigma/ In English: The standard error of the sample mean equals the ordinary standard deviation divided by the square root of the sample size.

The standard error of the mean is the standard deviation of the sample means around mu. Another way to say that: The average unsquared distance of the means of random samples from the population mean (mu) equals the average unsquared distance of individual scores from the population mean divided by the square root of the sample size.

Sample means tend to form a normal curve. We can show that if we start with a tiny population N=5 The scores in this population are 1, 3, 5, 7, & 9. They form a perfectly rectangular distribution. Mu = 5.00 Sigma = 2.83 We are going to see the means of all the possible samples of size 2 (n=2) First see the population, then the list of samples

The standard error = the standard deviation divided by the square root of n, the sample size In the example you just saw, sigma = Divide that by the square root of n (1.414) and you get the standard error of the mean (2.00). The formula works. And it works every time.

Let’s see what sigma X-bar can tell us We know that the mean of SAT/GRE scores = 500 and sigma = 100 So 68.26% of individuals will score between 400 and 600 and 95.44% will score between 300 and 700 NOTE THAT SAMPLE MEANS FALL CLOSER TO MU, ON THE AVERAGE, THAN DO INDIVIDUAL SCORES.

What happens when we take random samples with n=4? The standard error of the mean is sigma divided by the square root of the sample size = 100/2= % of the sample means (n=4) will be within 1.00 standard error of the mean from mu and 95.44% will be within 2.00 standard errors of the mean from mu So, 68.26% of the sample means (n=4) will be between 450 and 550 and 95.44% will fall between 400 and 600

Let’s make the samples larger Take random samples of SAT scores, with 400 people in each sample, the standard error of the mean is sigma divided by the square root of 400 = 100/20= % of the sample means will be within 1.00 standard error of the mean from mu and 95.44% will be within 2.00 standard errors of the mean from mu. So, 68.26% of the sample means (n=400) will be between 495 and 505 and 95.44% will fall between 490 and 510.

You try it with random samples of SAT scores, with 2500 people in each sample. In what interval can we expect that 68.26% of the sample means will fall? In what interval can we expect 95.44% of the sample means to fall?

With n= 2500, the standard error of the mean is sigma divided by the square root of 2500 = 100/50= % of the sample means will be within 1.00 standard error of the mean from mu and 95.44% will be within 2.00 standard errors of the mean from mu % of the sample means (n=2500) will be between and and 95.44% will fall between and

A slightly tougher question Using SAT scores, with n=2500: Into what interval should 95% of the sample means fall? 95% of the sample means should fall within standard errors of the mean from mu. Given that sigma X-bar =2.00, you multiply * sigma X-bar = x 2.00 = 3.92

Thus: 95% of the sample means should fall in an interval that goes 3.92 points in both directions around mu 500 – 3.92 = = So 95% of sample means (n=2500) should fall between and

The Central Limit Theorem

What happens as n increases? The sample means get closer to each other and to mu. Their average squared distance from mu equals the variance divided by the size of the sample. Therefore, their average unsquared distance from mu equals the standard deviation divided by the square root of the size of the sample. The sample means fall into a more and more perfect normal curve. These facts are called “The Central Limit Theorem” and can be proven mathematically.

CONFIDENCE INTERVALS

We want to define two intervals around mu: One interval into which 95% of the sample means will fall. Another interval into which 99% of the sample means will fall.

95% of sample means will fall in a symmetrical interval around mu that goes from standard errors below mu to standard errors above mu A way to write that fact in statistical language is: CI.95 : mu sigma X-bar or CI.95 : mu sigma X-bar < X-bar < mu sigma X-bar

As I said, 95% of sample means will fall in a symmetrical interval around mu that goes from standard errors below mu to standard errors above mu Take samples of SAT/GRE scores (n=400) Standard error of the mean is sigma divided by the square root of n=100/ = 100/20.00= standard errors of the mean with such samples = (5.00)= 9.80 So 95% of the sample means can be expected to fall in the interval = and = CI.95 : mu sigma X-bar = or CI.95 : < X-bar <

99% of sample means will fall within standard errors from mu Take the same samples of SAT/GRE scores (n=400) The standard error of the mean is sigma divided by the square root of n=100/20.00= standard errors of the mean with such samples = (5.00)= So 99% of the sample means can be expected to fall in the interval = and = CI.99 : mu sigma X-bar = or CI.99 : < the sample mean <