Herzel Yamin & Chen Menachem

Slides:



Advertisements
Similar presentations
Basic Electronics Ninth Edition Basic Electronics Ninth Edition ©2002 The McGraw-Hill Companies Grob Schultz.
Advertisements

Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph White and Branko Popov University of South Carolina, Columbia,
NPRE 498 Energy Storage Systems Garrett Gusloff 11/21/2014
STATO DI SVILUPPO DELL’ACCUMULO ENERGETICO PER VIA ELETTROCHIMICA
Filippo Parodi /Paolo Capobianco (Ansaldo Fuel Cells S.p.A.)
EET Electronics Survey Chapter 17 - Batteries.
Materials for Electrochemical Energy Conversion
Study Of Fuel Cell By:- Sunit Kumar Gupta
Biological Engineering Electrochemistry & Virus-Templated Electrodes F. John Burpo Biomolecular Materials Laboratory Massachusetts Institute of Technology.
Jason Zhang Pacific Northwest National Laboratory Richland, WA Presentation in METS 2012 Taipei, Taiwan Nov , HIGH ENERGY BATTERIES FOR ELECTRIC.
Battery University online: Brief history of the battery.
2 Section.
Electrochemical Characterization of Li-ion Batteries for Hybrid Application Ageing Study Abdilbari Shifa Mussa, Rakel Wreland Lindström, Mårten Behm,
NEXT GENERATION LITHIUM ENERGY STORAGE.. COMPANY OVERVIEW Research & Development/Sales/Distribution/Manufacturing Product Development Auxiliary power.
Rethinking Lithium Energy Storage and Battery Architecture Roland Pitts Founding Scientist Planar Energy Devices Orlando, FL
Studies on Capacity Fade of Spinel based Li-Ion Batteries by P. Ramadass, A. Durairajan, Bala S. Haran, R. E. White and B. N. Popov Center for Electrochemical.
Quantitative Estimation of Capacity Fade of Sony cells Cycled at Elevated Temperatures by Branko N. Popov, P.Ramadass and Bala S. Haran Center for.
Effects of Discharge Rates on the Capacity Fade of Li-ion Cells Department of Chemical Engineering University of South Carolina 1 Effects of Discharge.
Capacity Fade Studies of LiCoO 2 Based Li-ion Cells Cycled at Different Temperatures Bala S. Haran, P.Ramadass, Ralph E. White and Branko N. Popov Center.
By: Jasmina (Nina) Jovanovic. Chemistry behind batteries: Battery – a group of two or more galvanic cells connected in series 1. Disposable batteries.
The Lithium-Ion Battery Service Life Parameters
6A Luk Pui Lam (7). Lead-acid accumulator Lithium battery charged A secondary cell is any kind of electrolytic cell in which the electrochemical reaction.
PH0101 UNIT-5 LECTURE 7 Introduction Types of battery Lithium battery
ADVANCED BATTERY TECHNOLOGY HYBRID 3 AUXILIARY ALT POWER UNITS Paul Baumann:
Rechargeable batteries!
Nanotechnology for Future Batteries
Simple Designed Synthesis of Graphene Based Nanocomposites for Energy Related Applications Yuanzhe Piao Graduate school of Convergence Science and Technology,
20-2 Batteries A battery is a group of cells in a series...the total charge is the sum of the charges of the cells. D,C,AA, AAA and other similar products.
Product Engineering Processes Battery Primer A short battery primer Handbook of batteries, Linden and Reddy.
Lithium-Ion Battery By QingjieBao. A lithium-ion battery (sometimes Li-ion battery or LIB) is a family of rechargeable battery types in which lithium.
Nanotechnology and the Lithium-ion Battery. Batteries in General –Electrolyte –Electrodes –Anode –Cathode Nanotechnology and the Lithium-ion Battery.
Cells and Batteries A cell is a unit which includes two electrodes and one electrolyte.
Lithium Iron Phosphate Lithium Ferrous Phosphate Lithium Ferrophosphate LiFePO, LiFePO4, Li-Iron, LiFe, LFP 4 types of cells (3.2V/cell). Many multi-cell.
Kozicki Enterprises Company Second Solar Lithium Ion Batteries SEC 598 Project 1.
Electrochemical Cells in Actions Batteries and Fuel Cells Chapter 15.
SEC 598 – PV SYSTEMS ENGINEERING Project -1 A Brief Study on Lithium-Ion Battery Technology For Large Scale Residential Systems - GOVINDARAJASEKHAR SINGU.
Mid Semester Presentation. Team Members Chapman, Jonathan Duties: Recharging Circuit Major: Electrical Engineering Dang, Quoc Duties: Power Circuit, Website.
Aircraft Electrical Systems Objectives (a) Explain the difference between Primary & Secondary cells (b) Compare Lead Acid & Nickel Cadmium batteries (c)
Fuel cell.
Electrochemical Reactions. Anode: Electrons are lost due to oxidation. (negative electrode) Cathode: Electrons are gained due to reduction. (positive.
BY: AANCHAL SINGH ANKITA DUBEY AYUSHI SRIVASTAVA.
PAPER BATTERY.
Cells and Batteries. Learning Objectives  To identify different types of cells  To describe the characteristics of each type of cell  To describe the.
Electrochemical Reactions. Anode: Electrons are lost due to oxidation. (negative electrode) Cathode: Electrons are gained due to reduction. (positive.
Circuit Electricity. Electric Circuits The continuous flow of electrons in a circuit is called current electricity. Circuits involve… –Energy source,
Applications: thin form Lion batteries Electrode side Co-extruded electrode + separator film Separator side Graphite (MCMB2528) side 300µ thick SiO 2 /
Lithium-Ion Battery By QingjieBao.
Secondary Cell Nickel Cadmium (NiCd) Cells and Batteries
Lithium-ion batteries in PSOC operation
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
Figure 5.1 Discharging characteristics of a primary cell.
Show Video:
BATTERIES THAT CHARGES ON AIR
Aging of Lithium Ion Batteries
Photovoltaic Systems Engineering
Engineering Chemistry
Efficient Dynamics & Connected Drive
Senior Design : Shape Conformable Battery Pack
JINGYU SI Mechanical Engineering Department
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Tri-Services Expo July 15-17, 2003
Batteries and DC Power Supplies
Understanding Batteries-Concepts for Teaching
Zhizhang Yuan, Yinqi Duan, Tao Liu, Huamin Zhang, Xianfeng Li
Photovoltaic Systems Engineering
Volume 1, Issue 2, Pages (October 2017)
High-Energy Li Metal Battery with Lithiated Host
Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
Lithium Sulfur Batteries
Introduction Purpose To describe the features and capabilities of two new coin cell supercapacitor series from CDE. Objectives Explain advantages of supercapacitors.
Presentation transcript:

Herzel Yamin & Chen Menachem High Power High Energy 4 Volt   Lithium Primary Cells Herzel Yamin & Chen Menachem Tadiran Batteries Ltd IFCBC , 4/2/2010 TAU

Outline סקירה ספרותית קצרה - תאי ליתיום יון מבנה ועקרון פעולה - תאי ליתיום יון מבנה ועקרון פעולה - תאי ליתיום יון היברידי עם תא ראשוני לפולסי זרם גבוהים - שיקוע ליתיום מתכתי על ליתיום ועל מתכות אינרטיות תאי TLM – תאי ליתיום עשירי אנרגיה והספק - מבנה ועקרון פעולה - משפחת מוצרים התאים HP , MP , HE - תא TLM מסוג UHP להספקים גבוהים מאוד סיכום ומסקנות

Li/Ion -Schematic Representation Graphite Anode Discharge Transition Metal Oxide Cathode Charge

PulsesPlus System + Li/SOCl2 HLC PulsesPlus

The Pulses Plus™ Battery System  A combination of primary and secondary cells which forms High Power-High Energy primary power source with synergistic effect. The primary cells maximize the energy and the secondary cells maximize the power. The cells are combined in a modular way to form a wide variety of efficient power sources having the energy, power and voltages tailored to specific market demands.  

Modularity of PulsesPlus Neptune – 1 cell and 1 HLC IBM 2 cells and 2 HLC’s Kayser 9 cells and 3 HLC’s Oceanography 96 cells and 12 HLC’s

Pulse Plus Characteristics High energy density and high rate pulse capability. High and stable operating voltage. Wide operating temperature range. Free from any passivation and TMV problems. Long shelf life Safe as bobbin type Li/SOCl2 cell

Power Capability of AA Size HLC @ RT

Voltage-time curves for AA cells after 128 months storage at RT 2.0 2.5 3.0 3.5 4.0 1 10 100 1,000 10,000 Time (mSec) Voltage, V PulsesPlus at 1000mA Li/SOCl2 at 10mA

Power Capability of AA HLC 3.9 Volt primary 1A 2A 3.5A 5A

Voltage stability at elevated temperature HLC performance Voltage stability at elevated temperature

HLC Development - Very High Power HLC ”B” type model 2009 “A “ type model 2003 “N “ type model 2001 1st generation 1998

בעיית שיקוע ליתיום מתכתי איכות שיקוע ירודה של ליתיום מתכתי – אין SEI טוב שיקוע על מתכות אינרטיות כמו ניקל או נחושת - מכוסות בשכבות פסיביות של תחמוצות . - ליתיום מתחיל לשקוע רק לאחר תגובה עם הממס והיווצרות שכבה פסיבית שאינה מוליכה אלקטרונים שיקוע ליתיום על ליתיום מתכתי מסחרי - מכוסה תמיד בשכבות פסיביות של אוקסידים, קרבונטים או נטרידים - דרושה שכבת SEI טובה לשקוע איכותי של ליתיום על ליתיום מתכתי - בתמיסת דיאוקסולן* נמצאה איכות שקוע טובה יחסית של ליתיום מתכתי *עבודה משותפת בר אילן ותדיראן- פרופסור דורון אורבך * חלון מתחים אינו מתאים לתאי ליתיום יון או לקתודת NCA

The TLM System Tadiran’s Proprietary Innovative System Lithium is coated in situ on carbon electrode Coating thickness depends on ratio of cathode to carbon

Composite Coating Anode Advantages High anode capacity up to 3860mAh/gr vs. 372mAh/gr for graphite Very thin Li coating can be obtained ( 1 µm or even thinner) High anode mechanical strength In situ coating

The TLM System General Characteristics - Independent 4 volt primary power source - High power capability - Low self discharge rate - Wide operating temperature range - High safety level Designs: - HP , MP , HE & UHP Applications: - High continuous current after long storage period

Experimental- TLM System 4.1 Volt Hermetically sealed primary cell Design: AA size jelly roll internal construction Graphite & Lithium metal based anode LiAlNiCoO2 based cathode Micro porous Separator Electrolyte : LiPF6 in carbonates mixture

Tadiran TLM Battery Series

Broaden of the TLM Products Line New Member- High Energy High Power TLM 1550 HE Cell 1 Ampere Discharge 1550HP 1550MP 1550HE

Discharge Capability at RT TLM 1550HP - Performance

Storage Test @ RT for TLM 1550HP Average self discharge current 0.6 µA 12 % capacity loss in 15 years

TLM - 1550 MP @ RT Discharge

Development of new TLM HE cell

Development of new TLM HE cell Much better in power capabilities compared to the HP cells

TLM 1550 HE @ 1A Discharge curves at various temperatures

Ultra High Power TLM Cell TLM 1550 UHP

TLM 1550 UHP

New R&D Member AA UHP cell Cell capacity at various currents and temperatures Temperature ( º C) Current ( Ampere) Capacity ( mAh) 25 º C 20 380 -20 º C 6 360 -40 º C 3 330

Rate Capability of UHP AA Cell 20A @ RT 6A @ -20º C 3A @-40ºC

Thank You