Riemann Sums. Objectives Students will be able to Calculate the area under a graph using approximation with rectangles. Calculate the area under a graph.

Slides:



Advertisements
Similar presentations
5/16/2015 Perkins AP Calculus AB Day 5 Section 4.2.
Advertisements

Area Between Two Curves
Area Between Two Curves
Definition: the definite integral of f from a to b is provided that this limit exists. If it does exist, we say that is f integrable on [a,b] Sec 5.2:
Copyright © Cengage Learning. All rights reserved.
Aim: Riemann Sums & Definite Integrals Course: Calculus Do Now: Aim: What are Riemann Sums? Approximate the area under the curve y = 4 – x 2 for [-1, 1]
A REA A PPROXIMATION 4-B. Exact Area Use geometric shapes such as rectangles, circles, trapezoids, triangles etc… rectangle triangle parallelogram.
7 Applications of Integration
Integration Copyright © Cengage Learning. All rights reserved.
Integration 4 Copyright © Cengage Learning. All rights reserved.
Section 7.2a Area between curves.
6.3 Definite Integrals and the Fundamental Theorem.
Homework questions thus far??? Section 4.10? 5.1? 5.2?
If the partition is denoted by P, then the length of the longest subinterval is called the norm of P and is denoted by. As gets smaller, the approximation.
Section 15.3 Area and Definite Integral
Section 5.2: Definite Integrals
Areas & Definite Integrals TS: Explicitly assessing information and drawing conclusions.
In this section, we will introduce the definite integral and begin looking at what it represents and how to calculate its value.
Announcements Topics: -sections 7.3 (definite integrals) and 7.4 (FTC) * Read these sections and study solved examples in your textbook! Work On: -Practice.
In this section, we will investigate how to estimate the value of a definite integral when geometry fails us. We will also construct the formal definition.
5.6 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Section 5.1/5.2: Areas and Distances – the Definite Integral Practice HW from Stewart Textbook (not to hand in) p. 352 # 3, 5, 9 p. 364 # 1, 3, 9-15 odd,
Warm Up 1) 2) 3)Approximate the area under the curve for 0 < t < 40, given by the data, above using a lower Reimann sum with 4 equal subintervals. 4)Approximate.
1 Definite Integrals Section The Definite Integral The definite integral as the area of a region: If f is continuous and non-negative on the closed.
Integration 4 Copyright © Cengage Learning. All rights reserved.
A REA A PPROXIMATION 4-E Riemann Sums. Exact Area Use geometric shapes such as rectangles, circles, trapezoids, triangles etc… rectangle triangle parallelogram.
Chapter 5: Calculus~Hughes-Hallett §The Definite Integral.
11.5 Area After this lesson, you should be able to: Use sigma notation to write and evaluate a sum. Understand the concept of area. Approximate.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Area of a Plane Region We know how to find the area inside many geometric shapes, like rectangles and triangles. We will now consider finding the area.
1 Warm-Up a)Write the standard equation of a circle centered at the origin with a radius of 2. b)Write the equation for the top half of the circle. c)Write.
Estimating area under a curve
SECTION 4-2 (A) Application of the Integral. 1) The graph on the right, is of the equation How would you find the area of the shaded region?
RIEMANN SUMS AP CALCULUS MS. BATTAGLIA. Find the area under the curve from x = 0 to x = 35. The graph of g consists of two straight lines and a semicircle.
To find the area under the curve Warm-Up: Graph. Area under a curve for [0, 3]  The area between the x-axis and the function Warm-up What is the area.
4.3 Riemann Sums and Definite Integrals. Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits. Evaluate a.
Section 5.2 The Definite Integral. Last section we were concerned with finding the area under a curve We used rectangles in order to estimate that area.
Riemann Sums and Definite Integration y = 6 y = x ex: Estimate the area under the curve y = x from x = 0 to 3 using 3 subintervals and right endpoints,
Section 4.3 Day 1 Riemann Sums and Definite Integrals AP Calculus BC.
Chapter Definite Integrals Obj: find area using definite integrals.
Lesson 5-2 The Definite Integral. Ice Breaker See handout questions 1 and 2.
5.2 Definite Integrals Objectives SWBAT: 1) express the area under a curve as a definite integral and as a limit of Riemann sums 2) compute the area under.
Chapter 6 Integration Section 5 The Fundamental Theorem of Calculus (Day 1)
4.3 Riemann Sums and Definite Integrals Definition of the Definite Integral If f is defined on the closed interval [a, b] and the limit of a Riemann sum.
Lesson 5-2R Riemann Sums. Objectives Understand Riemann Sums.
Riemann sums & definite integrals (4.3) January 28th, 2015.
“In the fall of 1972 President Nixon announced that the rate of increase of inflation was decreasing. This was the first time a sitting president used.
Definite Integral df. f continuous function on [a,b]. Divide [a,b] into n equal subintervals of width Let be a sample point. Then the definite integral.
Applications of Integration 7 Copyright © Cengage Learning. All rights reserved.
Definite Integrals. Definite Integral is known as a definite integral. It is evaluated using the following formula Otherwise known as the Fundamental.
Section 4.2 The Definite Integral. If f is a continuous function defined for a ≤ x ≤ b, we divide the interval [a, b] into n subintervals of equal width.
Lesson 5-2 The Definite Integral. Ice Breaker Find area between x-axis and y = 2x on [0,3] using 3 rectangles and right-end points v t Area of.
4.3 Riemann Sums and Definite Integrals
5.2 – The Definite Integral. Introduction Recall from the last section: Compute an area Try to find the distance traveled by an object.
Wednesday, April 20, 2016MAT 145. Wednesday, April 20, 2016MAT 145.
1. Graph 2. Find the area between the above graph and the x-axis Find the area of each: 7.
The Definite Integral. Area below function in the interval. Divide [0,2] into 4 equal subintervals Left Rectangles.
DO NOW: v(t) = e sint cost, 0 ≤t≤2∏ (a) Determine when the particle is moving to the right, to the left, and stopped. (b) Find the particles displacement.
Approximating Antiderivatives. Can we integrate all continuous functions? Most of the functions that we have been dealing with are what are called elementary.
4.2 Area. After this lesson, you should be able to: Use sigma notation to write and evaluate a sum. Understand the concept of area. Approximate the area.
4-2 AREA AP CALCULUS – MS. BATTAGLIA. SIGMA NOTATION The sum of n terms a 1, a 2, a 3,…, a n is written as where i is the index of summation, a i is the.
SECTION 4-3-B Area under the Curve. Def: The area under a curve bounded by f(x) and the x-axis and the lines x = a and x = b is given by Where and n is.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Converting a Definite Integral to a limit of a Riemann Sum and converting a limit of a Riemann Sum to a Definite Integral This template can be used as.
Section 6. 3 Area and the Definite Integral Section 6
Integration & Area Under a Curve
Area & Riemann Sums Chapter 5.1
Section 5.2 Definite Integrals.
AP Calculus December 1, 2016 Mrs. Agnew
Area Under a Curve Riemann Sums.
Presentation transcript:

Riemann Sums

Objectives Students will be able to Calculate the area under a graph using approximation with rectangles. Calculate the area under a graph using geometric formulas.

Riemann Sums For f(x) a continuous function on the interval, the area bounded by the graph of f(x), the x-axis, a, and b using Riemann sums can be represented by where and is the x-value in the ith subinterval so that touches the graph. As n approaches infinity, this can be represented as the definite integral

Riemann Sums As n approaches infinity, this can be represented as the definite integral

Example 1 Find for the graph of f(x) shown below

Example 2 Approximate the area under the graph of and above the x-axis from x = 1 to x = 9 using rectangles with n = 4 for each of the following methods: a.left endpoints b.right endpoints c.average the answers to parts a and b d.midpoints

Example 3 Find the exact value of the integral using formulas from geometry.

Example 4 Find the exact value of the integral using formulas from geometry.