M-Estimation The Model –min E(q(z, –∑ i=1,…,n q(z i, )/n → p E(q(z, –b = argmin ∑ i=1,…,n q(z i, ) (or divided by n) –Zero-Score: ∑ i=1,…,n q(z i,b ′ = 0 –Positive Definite Hessian: ∑ i=1,…,n q(z i,b ′
NLS, ML as M-Estimation Nonlinear Least Squares –y = f(x, ) + z =[y,x] –S(β) = ε′ε = ∑ i=1,…,n (y i -f(x i, )) 2 –q(y i,x i, ) = (y i -f(x i, )) 2 –b = argmin S(β) Maximum Log-Likelihood –ll(β) = ∑ i=1,…,n ln pdf(y i,x i, ) –q(y i,x i, ) = ln pdf(y i,x i, ) –b = argmin -ll(β)
The Score Vector s(z, ) = q(z, ′ –E(s(z, )) = E( q(z, ′) = 0 ∑ i=1,…,n s(z i, )/n → p E(s(z, )) = 0 –V = Var(s(z, )) = E(s(z, )s(z, )′) = E(( q(z, ′) ( q(z, ) ) ∑ i=1,…,n [s(z i, )s(z i, )′]/n → P Var(s(z, )) ∑ i=1,…,n s(z i, )/n → d N(0,V)
The Hessian Matrix H(z, ) = E( s(z, )/ ) = E( q(z, ′ –∑ i=1,…,n s(z i, )/ n → p H(z, ) Information Matrix Equality does not necessary hold in general: - H ≠ V –More general than NLS and ML
The Asymptotic Theory n(b- ) = {∑ i=1,…,n s(z i,b)/ n} -1 [∑ i=1,…,n s(z i,b)/n] n(b- ) → d N(0,H -1 VH -1 ) V = E(s(z, )s(z, )′) = E[( q(z, )′( q(z, )] H = E( s(z, )/ ) = E( q(z, ′ –∑ i=1,…,n [s(z i,b)s(z i,b)′]/n → p V –∑ i=1,…,n s(z i,b)/ n → p H
Asymptotic Normality b → p b ~ a N( ,Var(b)) Var(b) = H -1 VH -1 –H and V are evaluated at b: H = ∑ i=1,…,n [ 2 q (z i,b)/ ′ V = ∑ i=1,…,n [ q(z i,b)/ ][ q(z i,b)/ ′]
Application Heteroscedastity Autocorrelation Consistent Variance-Covariance Matrix –Non-spherical disturbances in NLS Quasi Maximum Likelihood (QML) –Misspecified density assumption in ML –Information Equality may not hold
Example Nonlinear CES Production Function ln(Q) = 1 + 4 ln[ 2 L 3 +(1- 2 )K 3 ] + –NLS (homoscedasticy) –NLS (robust covariances) –ML (normal density) –QML (misspecified normality)
Example Nonlinear CES Production Function Parameter Estimate M-Min Robust s.e. M-Min OIM s.e. M-Min OPG s.e. NLS s.e. SSE Note: OIM, OPG, and NLS s.e. are under homo. & no auto.
Example Nonlinear CES Production Function Parameter Estimate M-Max Robust s.e. M-Max OIM s.e. M-Max OPG s.e. ML s.e Log-Lik Note: OIM, OPG, and NLS s.e. are under homo. & no auto.