K. Rustan M. Leino Microsoft Research, Redmond Invited talk, TACAS 2007 ETAPS, Braga, Portugal 28 March 2007.

Slides:



Advertisements
Similar presentations
1 Lecture 5 Towards a Verifying Compiler: Multithreading Wolfram Schulte Microsoft Research Formal Methods 2006 Race Conditions, Locks, Deadlocks, Invariants,
Advertisements

Verification of object-oriented programs with invariants Mike Barnett, Robert DeLine, Manuel Fahndrich, K. Rustan M. Leino, Wolfram Schulte Formal techniques.
Joint work with Mike Barnett, Robert DeLine, Manuel Fahndrich, and Wolfram Schulte Verifying invariants in object-oriented programs K. Rustan M. Leino.
Extended Static Checking for Java Cormac Flanagan K. Rustan M. Leino Mark Lillibridge Greg Nelson James B. Saxe Raymie Stata Compaq SRC 18 June 2002 PLDI02,
The Spec# programming system K. Rustan M. Leino Microsoft Research, Redmond, WA, USA Lunch seminar, Praxis Bath, UK 6 Dec 2005 joint work with Mike Barnett,
Bor-Yuh Evan Chang Daan Leijen Peter Müller David A. Naumann The Spec# programming system Mike Barnett Rob DeLine Manuel Fähndrich Bart Jacobs K. Rustan.
Demand-driven inference of loop invariants in a theorem prover
Object Invariants in Specification and Verification K. Rustan M. Leino Microsoft Research, Redmond, WA Joint work with: Mike Barnett, Ádám Darvas, Manuel.
Writing specifications for object-oriented programs K. Rustan M. Leino Microsoft Research, Redmond, WA, USA 21 Jan 2005 Invited talk, AIOOL 2005 Paris,
1 Towards a Verifying Compiler: The Spec# Approach Wolfram Schulte Microsoft Research Formal Methods 2006 Joint work with Rustan Leino, Mike Barnett, Manuel.
Program Verification Using the Spec# Programming System ETAPS Tutorial K. Rustan M. Leino, Microsoft Research, Redmond Rosemary Monahan, NUIM Maynooth.
Technologies for finding errors in object-oriented software K. Rustan M. Leino Microsoft Research, Redmond, WA Lecture 3 Summer school on Formal Models.
Technologies for finding errors in object-oriented software K. Rustan M. Leino Microsoft Research, Redmond, WA Lecture 0 Summer school on Formal Models.
Spec# K. Rustan M. Leino Senior Researcher Programming Languages and Methods Microsoft Research, Redmond, WA, USA Microsoft Research faculty summit, Redmond,
Automated Theorem Proving Lecture 1. Program verification is undecidable! Given program P and specification S, does P satisfy S?
Lecture 4 Towards a Verifying Compiler: Data Abstraction Wolfram Schulte Microsoft Research Formal Methods 2006 Purity, Model fields, Inconsistency _____________.
Challenges in increasing tool support for programming K. Rustan M. Leino Microsoft Research, Redmond, WA, USA 23 Sep 2004 ICTAC Guiyang, Guizhou, PRC joint.
K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond, WA, USA 15 January 2009 Séminaire Digiteo Orsay, France.
The Spec# programming system K. Rustan M. Leino Microsoft Research, Redmond, WA, USA Distinguished Lecture Series Max Planck Institute for Software Systems.
Automated Software Verification with a Permission-Based Logic 20 th June 2014, Zürich Malte Schwerhoff, ETH Zürich.
Verification of Multithreaded Object- Oriented Programs with Invariants Bart Jacobs, K. Rustan M. Leino, Wolfram Schulte.
A simple sequential reasoning approach for sound modular verification of mainstream multithreaded programs Wolfram Schulte & Bart Jacobs Microsoft Research.
Leonardo de Moura and Nikolaj Bjørner Microsoft Research.
K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond, WA, USA Invited talk Informatics Education in Europe (IEE III’08)
K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond, WA, USA 3 December 2008 U. Lugano Lugano, Switzerland.
K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond, WA part 0 International Summer School Marktoberdorf Marktoberdorf,
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
ECI 2007: Specification and Verification of Object-Oriented Programs Lecture 2 Courtesy: K. Rustan M. Leino and Wolfram Schulte.
Lecture 2 Towards a Verifying Compiler: Logic of Object oriented Programs Wolfram Schulte Microsoft Research Formal Methods 2006 Objects, references, heaps,
Using and Building an Automatic Program Verifier K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond Lecture 1 LASER.
K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond, WA part 0 Summer School on Logic and Theorem-Proving in Programming.
ECI 2007: Specification and Verification of Object- Oriented Programs Lecture 1.
Building a program verifier K. Rustan M. Leino Microsoft Research, Redmond, WA 10 May 2006 Guest lecture, Shaz Qadeer’s cse599f, Formal Verification of.
K. Rustan M. Leino Microsoft Research, Redmond NUI Maynooth Maynooth, Ireland 8 June 2007.
K. Rustan M. Leino Microsoft Research, Redmond, WA, USA with Mike Barnett, Robert DeLine, Manuel Fahndrich, and Wolfram Schulte Toward enforceable contracts.
Well-cooked Spaghetti: Weakest-Precondition of Unstructured Programs Mike Barnett and Rustan Leino Microsoft Research Redmond, WA, USA.
Using and Building an Automatic Program Verifier K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond Lecture 5 LASER.
K. Rustan M. Leino Microsoft Research, Redmond, WA 10 Oct 2007 IFIP WG 2.3 meeting Santa Fe, NM.
K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond Caltech Pasadena, CA 12 November 2009.
Spec# K. Rustan M. Leino Senior Researcher Programming Languages and Methods Microsoft Corporation Joint work with: Mike Barnett, Robert DeLine, Manuel.
K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond, WA part 1 Summer School on Logic and Theorem-Proving in Programming.
Software Engineering Prof. Dr. Bertrand Meyer March 2007 – June 2007 Chair of Software Engineering Static program checking and verification Slides: Based.
K. Rustan M. Leino RiSE, Microsoft Research 1 Dec 2008 Invited talk, working group meeting COST Action IC0701, Formal Verification of Object-Oriented Software.
K. Rustan M. Leino Microsoft Research, Redmond, WA, USA 19 July 2007 Invited talk, CADE-21 Bremen, Germany.
Using and Building an Automatic Program Verifier K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond Lecture 3 Marktoberdorf.
Applications of extended static checking K. Rustan M. Leino Compaq SRC K. Rustan M. Leino Compaq SRC Systems Research Center Invited talk, SAS’01, Paris,
Reasoning about object structures with Spec# K. Rustan M. Leino Microsoft Research, Redmond, WA Joint work with: Mike Barnett, Ádám Darvas, Manuel Fähndrich,
Verification of Programs with Inspector Methods Bart Jacobs and Frank Piessens Dept. CS, K.U.Leuven, Belgium.
K. Rustan M. Leino Microsoft Research, Redmond, WA, USA with Mike Barnett, Robert DeLine, Manuel Fahndrich, and Wolfram Schulte Spec# Writing and checking.
Spec# Andreas Vida. Motivation Correct and maintainable software Correct and maintainable software Cost effective software production Cost effective software.
K. Rustan M. Leino Principal Researcher Microsoft Research, Redmond, WA, USA 14 Nov 2007 Øredev Malmö, Sweden.
Extended Static Checking for Java Cormac Flanagan Joint work with: Rustan Leino, Mark Lillibridge, Greg Nelson, Jim Saxe, and Raymie Stata.
K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond, WA part 3 International Summer School Marktoberdorf Marktoberdorf,
Specifying and verifying programs in Spec# K. Rustan M. Leino Microsoft Research, Redmond, WA, USA Invited talk, PSI 2006 Novosibirsk, Russia 27 June 2006.
K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond, WA part 2 International Summer School Marktoberdorf Marktoberdorf,
K. Rustan M. Leino Microsoft Research, Redmond, WA, USA 15 Nov 2007 Chalmers Göteborg, Sweden.
Spec# John Lefor Program Manager Developer Division, Microsoft.
Extended Static Checking for Java Cormac Flanagan Joint work with: Rustan Leino, Mark Lillibridge, Greg Nelson, Jim Saxe, and Raymie Stata Compaq Systems.
1 Verification of object-oriented programs with invariants Mike Barnett, Robert DeLine, Manuel Fahndrich, K. Rustan M. Leino, Wolfram Schulte ECOOP 2003.
K. Rustan M. Leino Microsoft Research, Redmond, WA, USA 8 Nov 2007 Invited talk, ASE 2007 Atlanta, GA.
Reasoning about object structures with Spec# K. Rustan M. Leino Microsoft Research, Redmond, WA Joint work with: Mike Barnett, Ádám Darvas, Manuel Fähndrich,
George Edwards Computer Science Department Center for Systems and Software Engineering University of Southern California
Extended Static Checking for Java
Dafny An automatic program verifier for functional correctness
Specification techniques for verifying object-oriented software
Class-local object invariants
Program Verification via an Intermediate Verification Language
Spec# Writing and checking contracts in a .NET language
Hoare-style program verification
Dafny An automatic program verifier for functional correctness
Presentation transcript:

K. Rustan M. Leino Microsoft Research, Redmond Invited talk, TACAS 2007 ETAPS, Braga, Portugal 28 March 2007

Dave Detlefs Cormac Flanagan Rajeev Joshi Gary Leavens Mark Lillibridge Todd Millstein Greg Nelson Jim Saxe Raymie Stata Mike Barnett Nikolaj Bjørner Evan Chang Ádám Darvas Rob DeLine Leo de Moura Manuel Fähndrich Diego Garbervetsky Bart Jacobs Francesco Logozzo Rosemary Monahan Michaŀ Moskal Peter Müller Madan Musuvathi Dave Naumann Simon Ou Arnd Poetzsch-Heffter Wolfram Schulte Herman Venter Angela Wallenburg …

Hoare, Joshi, Leavens, Misra, Naumann, Shankar, Woodcock, et al. “We envision a world in which computer programs are always the most reliable component of any system or device that contains them” [Hoare & Misra]

Spec# language Object-oriented.NET language More types Specifications (pre- and postconditions, etc.) Usage rules (methodology) Checking: Static type checking Run-time checking Static verification (optional)

sound modular verification focus on automation, not full functional correctness specifications no termination verification no verification of temporal properties

static verifier (Boogie) MSIL (“bytecode”) SMT solver V.C. generator Inference engine translator verification condition “correct” or list of errors Spec# compiler Spec# BoogiePL

Language design Specifications VC generation Inference and decision procedures Error messages

non-null types control flow if, loops, exceptions, gotos by default, put base-constructor call last include pre- and postconditions constructs à la Gypsy, Eiffel superset of full language is challenging

public void M( T? x ) { if (x == null) { … } else { int y = ((T!)x).f; … } }

public void M( T? x ) { if (x == null) { … } else { int y = ((!)x).f; … } }

public void M( T? x ) { if (x == null) { … } else { int y = x.f; … } } Spec# performs a data-flow analysis to allow this (similar to definite assignment)

class C : B { T ! x; public C(T ! y) { base(); this.x = y; this.P(); } public override int M() { return x.f; } } Is this code type safe? No! abstract class B { public B() { this.M(); } public abstract int M(); } null dereference

class C : B { T ! x; public C(T ! y) { this.x = y; base(); this.P(); } public override int M() { return x.f; } } Spec# allows x to be assigned before base constructor is called.

specifying consistency of data (invariants) organizing the heap (ownership, …) abstraction and information hiding (model fields, pure methods, …) frame conditions (modifies clauses) support for useful programming idioms Spec# has a numerous attributes—what is a small, usable set?

x x.M(); exposed valid

modifies p.x; modifies Heap; ensures (forall o: ref, f: field :: Heap[o,f] == old(Heap)[o,f] (o == p  f == x)  old(Heap)[o,allocated] old(Heap)[o,committed] );

use an intermediate language BoogiePL, Why [Filliâtre et al.] a common verification toolbus challenge: how to take advantage of special features/theories of the underlying provers? loop invariants simple inference helps applying method frame conditions to loops functions and quantifiers encode theories extensible, convenient

C C Eiffel … … Java+JML Spec# Simplify Z3 CVC 3 SMT Lib Coq … … BoogiePL abstract interpreter predicate abstraction termination detector … …

class C : object { int x; C() { … } virtual int M(int n) { … } static void Main() { C c = new C(); c.x = 12; int y = c.M(5); } } class C : object { int x; C() { … } virtual int M(int n) { … } static void Main() { C c = new C(); c.x = 12; int y = c.M(5); } }

// class types const unique System.Object: name; const unique C: name; axiom C <: System.Object; function typeof(o: ref) returns (t: name); // fields type field; const unique C.x: field; const unique allocated: field; // the heap var Heap: [ref, field] α ; class C : object { int x; class C : object { int x;

// method declarations procedure C..ctor(this: ref); requires this != null && typeof(this) <: C; modifies Heap; procedure C.M(this: ref, n: int) returns (result: int); requires this != null && typeof(this) <: C; modifies Heap; procedure C.Main(); modifies Heap; C() { … } virtual int M(int n) static void Main() C() { … } virtual int M(int n) static void Main()

// method implementations implementation C.Main() { var c: ref, y: int; start: havoc c; assume c != null; assume ! Heap[c, allocated]; assume typeof(c) == C; Heap[c, allocated] := true; call C..ctor(c); assert c != null; Heap[c, C.x] := 12; call y := C.M(c, 5); return; } C c = new C(); c.x = 12; int y = c.M(5);

public string NextChunk() modifies this.*; ensures result.Length <= ChunkSize; public string NextChunk() modifies this.*; ensures result.Length <= ChunkSize;

procedure Chunker.NextChunk(this: ref where $IsNotNull(this, Chunker)) returns ($result: ref where $IsNotNull($result, System.String)); // in-parameter: target object free requires $Heap[this, $allocated]; requires ($Heap[this, $ownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[this, $ownerRef], $inv] $Heap[$pc, $inv] == $typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc)); // out-parameter: return value free ensures $Heap[$result, $allocated]; ensures ($Heap[$result, $ownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[$result, $ownerRef], $inv] $Heap[$pc, $inv] == $typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc)); // user-declared postconditions ensures $StringLength($result) <= $Heap[this, Chunker.ChunkSize]; // frame condition modifies $Heap; free ensures (forall $o: ref, $f: name :: { $Heap[$o, $f] } $f != $inv && $f != $localinv && $f != $FirstConsistentOwner && (!IsStaticField($f) || !IsDirectlyModifiableField($f)) && $o != null && old($Heap)[$o, $allocated] && (old($Heap)[$o, $ownerFrame] == $PeerGroupPlaceholder || !(old($Heap)[old($Heap)[$o, $ownerRef], $inv] old($Heap)[$o, $f] == $Heap[$o, $f]); // boilerplate free requires $BeingConstructed == null; free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { $Heap[$o, $inv] } $o != null && !old($Heap)[$o, $allocated] && $Heap[$o, $allocated] ==> $Heap[$o, $inv] == $typeof($o) && $Heap[$o, $localinv] == $typeof($o)); free ensures (forall $o: ref :: { $Heap[$o, $FirstConsistentOwner] } old($Heap)[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] == $Heap[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==> old($Heap)[$o, $FirstConsistentOwner] == $Heap[$o, $FirstConsistentOwner]); free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { $Heap[$o, $inv] } old($Heap)[$o, $allocated] ==> old($Heap)[$o, $inv] == $Heap[$o, $inv] && old($Heap)[$o, $localinv] == $Heap[$o, $localinv]); free ensures (forall $o: ref :: { $Heap[$o, $allocated] } old($Heap)[$o, $allocated] ==> $Heap[$o, $allocated]) && (forall $ot: ref :: { $Heap[$ot, $ownerFrame] } { $Heap[$ot, $ownerRef] } old($Heap)[$ot, $allocated] && old($Heap)[$ot, $ownerFrame] != $PeerGroupPlaceholder ==> old($Heap)[$ot, $ownerRef] == $Heap[$ot, $ownerRef] && old($Heap)[$ot, $ownerFrame] == $Heap[$ot, $ownerFrame]) && old($Heap)[$BeingConstructed, $NonNullFieldsAreInitialized] == $Heap[$BeingConstructed, $NonNullFieldsAreInitialized];

most useful features in theorem prover: functions and equality, boolean connectives, quantifiers, arithmetic, … counterexamples good performance benchmarks very different from, say, TTA (time-triggered architecture) protocols wish: combine inference and theorem proving

non-chronological backtracking avoid “exponential splitting” incremental matching -- Leonardo de Moura, on Z3 for Boogie

SMT solver V.C. generator Inference engine verification condition BoogiePL Precision Unique variables names Functions, equality Arithmetic Heap operations Quantifiers Abstraction Computes fix-points Arithmetic Unique variables names Functions, equality Heap operations Spec# …

error location and execution trace to error can easily be reconstructed from simple/limited prover output better: concrete values, more explanation e.g., “an object allocated by method M and is later changed by the call to P might violate ownership invariant”

Download Spec# from here Spec#, C, functional languages, dynamically typed languages, … allow correctness features to drive language design use intermediate language separation of concern let us share as a community (abstract interpretation, VC generation, multiple theorem provers, predicate abstraction, …) theorem prover must be good with quantifiers exciting prospect: combine abstract interpretation and SMT solving mine counterexamples for more detailed error messages