GEOS 697 Special Topics: Watershed Hydrology Instructor: Jim McNamara Boise State University
GEOS 617: Watershed Processes Instructor: Jim McNamara Boise State University
8/23 Objectives Motivation for course Relation to HS Curriculum Course Logistics Assignment 1: Process review introduction
Intro Hydrology Course (GEOS 416/516 Hydrology) Equations for each arrow
Watershed Hydrology Fluxes (arrows) and stores are not independent Hydrologic behavior emerges in response to the integration of arrows that can not be predicted by simply connecting the arrows
Watershed Processes Watershed receives intermittent input from atmosphere, exports relatively continuous fluxes of water, solutes, sediment, and gasses. Studying the independent arrows lead to failure when predicting associated fluxes
For Example… “… streamflow responds promptly to rainfall inputs, but fluctuations in passive tracers are often strongly damped. This indicates that storm flow in these catchments is mostly ‘ old ’ water ” Kirchner 2003 HP
For Example… AmmoniumNitrateElectrical Cond. g/L S/c m g/L S/c m Streamflow (m 3 /s) g/L S/c m Streamflow (m 3 /s) Snowmelt Dry Antecedent Conditions Wet Antecedent Conditions a. b. c. d.e. f. g.h.i. McNamara et al., 2008
Hydrologic Pathways Dictate Solute Delivery Charlie Driscoll, SU
Watershed Hydrology We will gain deep understanding of the inner mechanics of watersheds –Why? Improved hydrologic modeling Biogeochemistry Water Policy Reservoir operation rules (US West) Cascading effects of land use land cover (LULC) change
Watershed Processes Watersheds are fundamental landscape units that arise from the interaction of climate, water, rock, and vegetation Water flux pathways are dictated by landscape properties in the short-term, which are dictated by water pathways in the long-term
Watershed Processes Governing Principle for Course: –Watersheds are fundamental landscape units that transport mass and energy through terrestrial systems, and provide sustenance for ecosystems and human societies. Holistic understanding, and effective management, of watershed processes is predicated on recognizing the interdependencies and feedbacks governing landscape evolution, hydrology, and ecology
Course Logistics See web page: ershed-hydrology/
Course Description GEOS 616 Watershed Hydrology. (3-0-3) (F). An integrated study of hydrologic processes operating in watersheds; relationships between hydrologic, biogeochemical, and geomorphologic processes. PREREQ: PERM/INST. In this course we will move beyond the study of individual hydrologic fluxes and stores to investigate the integrating nature of watersheds. We will review basic physics of hydrologic processes and then investigate how these properties interact and manifest as runoff generation, plant-soil water relations, and the coevolution of geomorphology and hydrologic response. Activities to promote learning include lectures, guided readings and discussions, student presentations, and projects. Students will complete approximately 6 projects related to the topics below. Most projects will involve acquisition, analysis and interpretation of data available online from several experimental watersheds throughout the country with an emphasis on Dry Creek and Reynolds Creek in southwest Idaho.
Course Structure This course requires active participation by all students. The instructor will use lectures to introduce each new topic. Subsequent class periods will be composed of student-led discussions and project work. To get the full experience students must attend all class periods, complete all reading assignments, and stay caught up on class projects. Course management will occur via the schedule: We will use publicly available data from several research watersheds throughout the US for most projects. –Dry Creek: –HJ Andrews: –Reynolds Creek:
Mission: To deliver an integrated suite of courses and research opportunities that facilitate understanding of physical processes and earth properties governing terrestrial water flux and storage promote understanding of the interactions and feedbacks between the hydrosphere, lithosphere, and biosphere develop data acquisition and interpretation skills Computational and analytical skills to model and predict hydrologic processes interactions Hydrologic Science Curriculum GEOS 511 Hydrology 1: Land- Atmosphere Interaction GEOS 512: Hydrology 2: Flow in Geologic Systems GEOS 5xx: Aqueous Geochemistry GEOS 5xx: Hydrologic Modeling GEOS 623: Advanced Hydrogeology GEOS 617: Watershed Processes Water Flux and Storage Data Acquisition, Analysis and Modeling Skills Hydrosphere, Lithosphere, Biosphere Interactions Admission Prerequisites *required,**recommended No credit towards degree. Basis science knowledge, computational and analytical skills, geological principles supporting surface and groundwater systems Introductory Core Basic physical properties and process governing water flux in the terrestrial hydrologic cycle, origin of solutes in water, basic computational skills, hydrologic simulation and prediction Focus Areas Advanced courses in specific Hydrologic Science sub-disciplines Supplemental Relevant courses from supporting disciplines *Degree in physical science or engineering with courses in -Introductory geology* -Geomorphology** -Stratigraphy/Sedimentation** *Differential and Integral Calculus *Physics I and Physics II *Chemistry I and Chemistry II *Statistics *GIS/ programming *GEOS 5xx: Matlab Primer GEOS 5xx: Biogeochemical Methods GEOS 5xx: Advanced Geomorphology UI-CE 5xx: Fluvial Geomorphology GEOS 624: Applied Hydrogeology CE 6xx: Contaminant Transport GEOS 618: Hydrologic Analysis CE 5xx: Engineering Hydrology GEOPH 6xx: Snow and Ice Physics GEOPH 6xx: Geostatistics ISU-GEOS 5xx: Remote Sensing CE 5xx: Hydrometeorology CE 5xx: GIS in Water Resources GEOPH 5xx: Open Channel Flow BIOL 5xx: Stream Ecology GEOPH 6xx: Hydrogeophysics Motivation: Our program is structured around the Definition of Hydrology: The geoscience that describes and predicts the spatial and temporal variations of water in the terrestrial, oceanic, and atmospheric compartments of the global water system, the movement of water on and under Earths surface, the physical and chemical processes accompanying that movement, and the biological processes that conduct or affect that movement. **Basic hydrology or water resources
Schedule of Topics 1.Course introduction -Summary of goals, objectives, and expectations 2. Hydrologic process review -A brief review of the physics governing individual hydrologic processes operating in watersheds including precipitation, snowmelt, infiltration, lateral surface and subsurface flow, groundwater flow, and streamflow. 3. Water Balance -An advanced treatment of mass balance concept operating a hillslope, watershed, basin, and continentental scales 4. Watershed Geomorphology -Quantitative analysis of the shape of watersheds, hillslopes, and channel networks; geomorphologic evolution of watersheds 5. Advanced concepts in watershed hydrology -Integrated hydrologic processes and emergent hydrologic properties in watersheds. -water residence time -Runoff generation -Storage, thresholds, and connectivity 6. Ecohydrology -Relationships between hydrology, vegetation, and geomorphology in catchments 7. Watershed biogeochemistry -An introduction to the role that hydrologic processes play in governing the export of mass from watersheds 8. Hydrologic modeling concepts -A capstone topic reconciling our knowledge of watershed hydrology with current hydrologic modeling approaches 9. Watershed Management/ Idaho watershed issues
Prerequisites Basic process hydrology Computational competence –MATLAB, GIS, programming recommended
Learning Outcomes Upon completing this course, students will be able to: –Conduct comparative hydrologic analyses of watersheds –Conduct geomorphologic analyses of watersheds –Understand the principles governing the coevolution of watershed geomorphology and hydrologic response –Understand basic ecohydrologic principles
Course Resources No required text, but you should all own one or two hydrology books an have access to hydrology journals
Experimental Watersheds Projects and lectures will draw heavily from a national “network” of hydrologic observatories
Assignment 1: Process Review Each student will prepare a 7 minute presentation consisting of 3-5 slides summarizing one “arrow”. Presentations must cover –Basic governing physics –Essential equations used to describe/model the process –Measurement methods –Other relevant information Process Assignments –Precipitation formation –Snowmelt –Infiltration and redistribution –Overland flow –Saturated groundwater flow –Streamflow –Evapotranspiration