Energy Level diagram for n- 2 level atoms. Radiation from an Extended Sample Destroy photon Raise Energy level Interaction with Radiation field.

Slides:



Advertisements
Similar presentations
X-RAY INTERACTION WITH MATTER
Advertisements

Quantum Theory of Collective Atomic Recoil in Ring Cavities
Femtosecond lasers István Robel
PLMCN‘10 Bloch-Polaritons in Multiple Quantum Well Photonic Crystals David Goldberg 1, Lev I. Deych 1, Alexander Lisyansky 1, Zhou Shi 1, Vinod M. Menon.
Stimulated emissionSpontaneous emission Light Amplification by Stimulated Emission of Radiation.
1 Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Yoan Léger Laboratory of Quantum Opto-electronics Ecole Polytechnique Fédérale de Lausanne Switzerland.
Non-equilibrium dynamics in the Dicke model Izabella Lovas Supervisor: Balázs Dóra Budapest University of Technology and Economics
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
The Bose-Einstein Condensate Jim Fung Phys 4D Jim Fung Phys 4D.
Claus Zimmermann Physikalisches Institut der Universität Tübingen Superradiance and Collective Atomic Recoil Laser: what atoms and fire flies have in common.
An STM Measures I(r) Tunneling is one of the simplest quantum mechanical process A Laser STM for Molecules Tunneling has transformed surface science. Scanning.
PG lectures Spontaneous emission. Outline Lectures 1-2 Introduction What is it? Why does it happen? Deriving the A coefficient. Full quantum description.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Absorption and emission processes
CHEM 515 Spectroscopy Lecture # 1.
Fiber-Optic Communications James N. Downing. Chapter 2 Principles of Optics.
Angular correlation in a speckle pattern of cold atomic clouds Eilat 2006 Ohad Assaf and Eric Akkermans Technion – Israel Institute of Technology.
George R. Welch Marlan O. Scully Irina Novikova Andrey Matsko M. Suhail Zubairy Eugeniy Mikhailov M. Suhail Zubairy Irina Novikova Andrey Matsko Ellipticity-Dependent.
PG lectures Spontaneous emission. Outline Lectures 1-2 Introduction What is it? Why does it happen? Deriving the A coefficient. Full quantum description.
Coherence and decay within Bose-Einstein condensates – beyond Bogoliubov N. Katz 1, E. Rowen 1, R. Pugatch 1, N. Bar-gill 1 and N. Davidson 1, I. Mazets.
Spontaneous emission of an atom near a wedge F. S. S. Rosa Los Alamos National Laboratory Work in collaboration with T.N.C. Mendes, C. Farina and A. Tenorio.
Coherence in Spontaneous Emission Creston Herold July 8, 2013 JQI Summer School (1 st annual!)
Chapter 5: Wave Optics How to explain the effects due to interference, diffraction, and polarization of light? How do lasers work?
Wave Physics PHYS 2023 Tim Freegarde. 2 2 Beating TWO DIFFERENT FREQUENCIES.
H. J. Metcalf, P. Straten, Laser Cooling and Trapping.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
X-rays The electric field E(r,t) is given as a cosine function.
Engineering Spontaneous Emission in Hybrid Nanoscale Materials for Optoelectronics and Bio-photonics Arup Neogi Department of Physics and Materials Engineering.
Condensed exciton-polaritons in microcavity traps C. Trallero-Giner Centro Latinoamericano de Fisica, Rio de Janeiro, Brazil Quito/Encuentro de Fisica/2013.
Superradiance, Amplification, and Lasing of Terahertz Radiation in an Array of Graphene Plasmonic Nanocavities V. V. Popov, 1 O. V. Polischuk, 1 A. R.
1 My Chapter 28 Lecture. 2 Chapter 28: Quantum Physics Wave-Particle Duality Matter Waves The Electron Microscope The Heisenberg Uncertainty Principle.
CHM 108 SUROVIEC FALL 2015 Quantum Mechanical Model.
Chapter 29 Particles and Waves.
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Bose-Einstein condensates in random potentials Les Houches, February 2005 LENS European Laboratory for Nonlinear Spectroscopy Università di Firenze J.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Luan Cheng (Institute of Particle Physics, Huazhong Normal University) I.Introduction II. Potential Model with Flow III.Flow Effects on Parton Energy Loss.
Quantum Effects in BECs and FELs Nicola Piovella, Dipartimento di Fisica and INFN-Milano Rodolfo Bonifacio, INFN-Milano Luca Volpe (PhD student), Dipartimento.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Quantum Optics II – Cozumel, Dec. 6-9, 2004
VORTICES IN BOSE-EINSTEIN CONDENSATES TUTORIAL R. Srinivasan IVW 10, TIFR, MUMBAI 8 January 2005 Raman Research Institute, Bangalore.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 16 (3/31/2014) Slide Introduction to Quantum Optics.
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Atomic transitions and electromagnetic waves
Bose-Einstein Condensation (a tutorial) Melinda Kellogg Wyatt Technology Corporation Santa Barbara, CA June 8, 2010.
Wave Physics PHYS 2023 Tim Freegarde.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009.
Spin-orbital effects in frustrated antiferromagnets Oleg A. Starykh, University of Utah, DMR Electron spin resonance (ESR) measures absorption.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Spin-lattice relaxation of individual lanthanide ions via quantum tunneling Fernando LUIS Orlando December 20 th 2010 Quantum Coherent Properties of Spins-III.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Light-Matter Interaction
Physics 1202: Lecture 35 Today’s Agenda
Superfluorescence in an Ultracold Thermal Vapor
Wave Particle Duality Light behaves as both a wave and a particle at the same time! PARTICLE properties individual interaction dynamics: F=ma mass – quantization.
Kenji Kamide* and Tetsuo Ogawa
Wave Nature of Matter Just as light sometimes behaves as a particle, matter sometimes behaves like a wave. The wavelength of a particle of matter is: This.
PHY Statistical Mechanics 12:00* -1:45 PM TR Olin 107
Raman Spectroscopy A) Introduction IR Raman
Presentation transcript:

Energy Level diagram for n- 2 level atoms

Radiation from an Extended Sample Destroy photon Raise Energy level Interaction with Radiation field

Radiation from an Extended Sample By some sort of change in basis:

“Spin” operators are the same as before Absorption or emission of a photon with momentum k, Radiation Rate in k direction:

Non-linear Rayleigh scattering/superradiance Collective scattering: Dicke superradiance Rayleigh: Inouye et al., Science (1998)

Non-linear Rayleigh scattering/superradiance Recoiling atoms interfere with stationary atoms to form a diffraction grating, which then enhances scattering into that mode The Scattered Power

Dicke’s Superradiance?

Non-linear Rayleigh scattering/superradiance Dipolar emission pattern radiates weakly along polarization axis, collective scattering is stronger along long axis I ~ 1-100mW/cm^2 t ~ 50 ms Superradiant decay of atoms Normal decay of atoms

References Coherence in Spontaneous Radiation Processes Dicke, Phys. Rev (1954) Superradiant Rayliegh Scattering from a Bose Einstein Condensate S. Inouye, Science, (1999) Cargese lecture notes W. Ketterle and S. Inouye: Collective enhancement and suppression in Bose-Einstein condensates. Compte rendus de l'académie des sciences, Série IV - Physique Astrophysique, vol. 2, pp (2001); e-print cond- mat/