吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十九讲 ) 离散数学. 例 8.2.5 设 S 是一个集合, ρ ( S )是 S 的幂集合,集合 的交( ∩ ),并(∪)是 ρ ( S )上的两个代数运算, 于是,( ρ ( S ), ∩ ,∪) 是一个格。而由例 8.2.1 知.

Slides:



Advertisements
Similar presentations
首 页 首 页 上一页 下一页 本讲内容 投影法概述三视图形成及其投影规律平面立体三视图、尺寸标注 本讲内容 复习: P25~P31 、 P84~P85 作业: P7, P8, P14[2-32(2) A3 (1:1)]
Advertisements

第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
概率统计( ZYH ) 节目录 2.1 随机变量与分布函数 2.2 离散型随机变量的概率分布 2.3 连续型随机变量的概率分布 第二章 随机变量及其分布.
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
第四章 犯罪概念与犯罪构成. 第一节 犯罪概念 一、犯罪概念的类型  (一)犯罪的形式概念  (二)犯罪的实质概念  (三)犯罪的混合概念.
位置相关查询处理 研究背景及意义 移动计算、无线通信以及定位技术的快速发展,使 得位置相关的查询处理及基于位置的信息服务技术 已经成为一个热点研究领域 。 大量的应用领域 ( 如地理信息系统、智能导航、交 通管制、天气预报、军事、移动电子商务等 ) 均迫 切需要有效地查询这些数据对象。
一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第四十二讲 ) 离散数学. 例 设 S = {a , b} , ρ ( S ) ={ ,{a},{b},{a , b}} 是 S 的幂集合, 则( ρ ( S ),∩, ∪)是一个格。 规定映射 g 为: g (  ) =
4 第四章 矩阵 学时:  18 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容: 矩阵的运算,可逆矩阵,初等矩阵及其性质和意义, 分块矩阵。  教学目的:  1 .使学生理解和掌握矩阵等价的相关理论  2 .能熟练地进行矩阵的各种运算.
第二章 质点组力学 质点组:许多(有限或无限)相 互联系的质点组成的系统 研究方法: 1. 分离体法 2. 从整体考虑 把质点的三个定理推广到质点组.
5 第五章 二次型 学时: 10 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容: 二次型的矩阵表示、标准型、唯一性、正定二次型。  教学目的:  1 、了解二次型的概念,二次型的矩阵表示。  2 、会化二次型为标准型,规范性。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
分析化学与无机化学中溶液 pH 值计算的异同比较 谢永生  分析化学是大学化学系的一门基础课,课 时较少,其内容主要是无机物的化学分析。 分析化学是以无机化学作为基础的,我们 都是在已掌握一定的无机化学知识后才学 习分析化学 。所以在分析 化学的学习中会 重复许多无机化学内容,造成学习没有兴.
1 为了更好的揭示随机现象的规律性并 利用数学工具描述其规律, 有必要引入随 机变量来描述随机试验的不同结果 例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述 例 检测一件产品可能出现的两个结果, 也可以用一个变量来描述 第五章 随机变量及其分布函数.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 6 章 解线性方程组的迭代法 直接法得到的解是理论上准确的,但是我们可以看得出, 它们的计算量都是 n 3 数量级,存储量为 n 2 量级,这在.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样 的一种手段。在实际中,数据不可避免的会有误差,插值函 数会将这些误差也包括在内。
11-8. 电解质溶液的 活度和活度系数 电解质是有能力形成可以 自由移动的离子的物质. 理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
例9:例9: 第 n-1 行( -1 )倍加到第 n 行上,第( n-2 ) 行( -1 )倍加到第 n-1 行上,以此类推, 直到第 1 行( -1 )倍加到第 2 行上。
主讲教师:陈殿友 总课时: 124 第八讲 函数的极限. 第一章 机动 目录 上页 下页 返回 结束 § 3 函数的极限 在上一节我们学习数列的极限,数列 {x n } 可看作自变量 为 n 的函数: x n =f(n),n ∈ N +, 所以,数列 {x n } 的极限为 a, 就是 当自变量 n.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十八讲 ) 离散数学. 第八章 格与布尔代数 §8.1 引 言 在第一章中我们介绍了关于集 合的理论。如果将 ρ ( S )看做 是集合 S 的所有子集组成的集合, 于是, ρ ( S )中两个集合的并 集 A ∪ B ,两个集合的交集.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第四十八讲 ) 离散数学. 例 设 S 是一个非空集合, ρ ( s )是 S 的幂集合。 不难证明 :(ρ(S),∩, ∪,ˉ, ,S) 是一个布尔代数。 其中: A∩B 表示 A , B 的交集; A ∪ B 表示 A ,
离子交换的基本理论 郑好转 化学 5 班 唐南理论 唐南理论把离子交换树脂看作是一种具有弹 性的凝胶, 它能吸收水分而溶胀. 溶胀后的离子 交换树脂的颗粒内部可以看作是一滴浓的电解 质溶液. 树脂颗粒和外部溶液之间的界面可以看 作是一种半透膜, 膜的一边是树脂相, 另一边为 外部溶液.
第十一章 曲线回归 第一节 曲线的类型与特点 第二节 曲线方程的配置 第三节 多项式回归.
第二部分 行政法律关系主体 第一节 行政主体 一、行政主体 (一)行政主体的概念 cc (二)行政主体资格含义及构成要件 CASE1CASE1\CASE2CASE2 (三)行政主体的职权和职责 1 、行政职权的概念及内容 2 、行政职权的特点 3 、行政职责.
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十五讲 ) 离散数学. 定理 群定义中的条件 ( 1 )和( 2 )可以减弱如下: ( 1 ) ’ G 中有一个元素左壹适合 1 · a=a; ( 2 ) ’ 对于任意 a ,有一个元素左逆 a -1 适 合 a -1 ·
6 第一章 线性空间 学时: 16 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容:集合、映射的概念;线性空间的定义与简单性质、维 数、基与坐标、过渡矩阵的概念;基变换与坐标变换;线性子空 间、子空间的交与和、子空间的直和;线性空间的同构等概念。
第二章 随机变量及其分布 第一节 随机变量及其分布函数 一、随机变量 用数量来表示试验的基本事件 定义 1 设试验 的基本空间为 , ,如果对试验 的每一个基 本事件 ,规定一个实数记作 与之对应,这样就得到一个定义在基本空 间 上的一个单值实函数 ,称变量 为随机变量. 随机变量常用字母 、 、 等表示.或用.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第四十五讲 ) 离散数学 模 格 定义 设( L , ≤ ) 是一个格,对任意 a , b , c ∈ L , 如果 a≤b ,都有 a  ( b×c ) = b× ( a  c ) 则称( L , ≤ )为模格。
非均相物系的分离 沉降速度 球形颗粒的 :一、自由沉降 二、沉降速度的计算 三、直径计算 1. 试差法 2. 摩擦数群法 四、非球形颗粒的自由沉降 1. 当量直径 de :与颗粒体积相等的圆球直径 V P — 颗粒的实际体积 2. 球形度  s : S—— 与颗粒实际体积相等的球形表面积.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 4 章 非线性方程求根 非线性科学是当今科学发展的一个重要研究方向,而非线性 方程的求根也成了一个不可缺的内容。但是,非线性方程的求根 非常复杂。
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
化学系 3 班 何萍 物质的分离原理 世世界上任何物质,其存在形式几乎均以混合 物状态存在。分离过程就是将混合物分成两 种或多种性质不同的纯物质的过程。 分分子蒸馏技术是一种特殊的液-液分离技术。
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 5 章 解线性方程组的直接法 实际中,存在大量的解线性方程组的问题。很多数值方 法到最后也会涉及到线性方程组的求解问题:如样条插值的 M 和.
主讲教师:陈殿友 总课时: 124 第十一讲 极限的运算法则. 第一章 二、 极限的四则运算法则 三、 复合函数的极限运算法则 一 、无穷小运算法则 机动 目录 上页 下页 返回 结束 §5 极限运算法则.
在发明中学习 线性代数 概念的引入 李尚志 中国科学技术大学. 随风潜入夜 : 知识的引入 之一、线性方程组的解法 加减消去法  方程的线性组合  原方程组的解是新方程的解 是否有 “ 增根 ” ?  互为线性组合 : 等价变形  初等变换  高斯消去法.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 7 章 矩阵的特征值和特征向量 很多工程计算中,会遇到特征值和特征向量的计算,如: 机械、结构或电磁振动中的固有值问题;物理学中的各种临界 值等。这些特征值的计算往往意义重大。
§2.2 一元线性回归模型的参数估计 一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计( OLS ) 三、参数估计的最大或然法 (ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干 扰项方差的估计.
第2章 激光器的工作原理 回顾 ——产生激光的三个必要条件: 1. 工作物质 2. 激励能源 3. 光学谐振腔
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
9的乘法口诀 1 .把口诀说完全。 二八( ) 四六( ) 五八( ) 六八( ) 三七( ) 三八( ) 六七( ) 五七( ) 五六( ) 十六 四十八 四十二 二十四 二十一 三十五 四十 二十四 三十 2 .口算, 并说出用的是哪句口诀。 8×8= 4×6= 7×5= 6×8= 5×8=
量子力学教程 ( 第二版 ) 3.4 连 续 谱 本 征 函 数 的 归 一 化 连续谱本征函数是不能归一化的 一维粒子的动量本征值为的本征函数 ( 平面波 ) 为 可以取 中连续变化的一切实数值. 不难看出,只要则 在量子力学中, 坐标和动量的取值是连续变化 的 ; 角动量的取值是离散的.
最 小 公 倍 数最 小 公 倍 数 最 小 公 倍 数最 小 公 倍 数. 例题 顺次写出 4 的几个倍数和 6 的几个倍数,它们 公有的倍数是哪几个?其中最小的是多少? 4 的倍数有 : 4 , 8 , 12 , 16 , 20 , 24 , 28 , 32 , 36 , … 6 的倍数有 :
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
平行线的平行公理与判定 九年制义务教育七年级几何 制作者:赵宁睿. 平行线的平行公理与判定 要点回顾 课堂练习 例题解析 课业小结 平行公理 平行判定.
周期信号的傅里叶变换. 典型非周期信号 ( 如指数信号, 矩形信号等 ) 都是满足绝对可 积(或绝对可和)条件的能量信号,其傅里叶变换都存在, 但绝对可积(或绝对可和)条件仅是充分条件, 而不是必 要条件。引入了广义函数的概念,在允许傅里叶变换采用 冲激函数的前提下, 使许多并不满足绝对可积条件的功率.
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 8 章 常微分方程 实际中,很多问题的数学模型都是微分方程。我们 可以研究它们的一些性质。但是,只有极少数特殊的方程 有解析解。对于绝大部分的微分方程是没有解析解的。
初中几何第三册 弦切角 授课人: 董清玲. 弦切角 一、引入新课: 什么是圆心角、圆周角、圆周角定理的内容是什么? 顶点在圆心的角叫圆心角。 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 定理:一条弧所对的圆周角等于它所对的圆心角的一半。 A B′ C B O.
Department of Mathematics 第二章 解析函数 第一节 解析函数的概念 与 C-R 条件 第二节 初等解析函数 第三节 初等多值函数.
首 页 首 页 上一页 下一页 本讲内容本讲内容 视图,剖视图(Ⅰ) 复习: P107 ~ P115 作业: P48(6-2,6-4), P49( 去 6-6) P50, P51(6-13), P52 P50, P51(6-13), P52 P53 (6-18,6-20) P53 (6-18,6-20)
《 UML 分析与设计》 交互概述图 授课人:唐一韬. 知 识 图 谱知 识 图 谱知 识 图 谱知 识 图 谱.
1 、如果 x + 5 > 4 ,那么两边都 可得 x >- 1 2 、在- 3y >- 4 的两边都乘以 7 可得 3 、在不等式 — x≤5 的两边都乘以- 1 可得 4 、将- 7x — 6 < 8 移项可得 。 5 、将 5 + a >- 2 a 移项可得 。 6 、将- 8x < 0.
名探柯南在侦查一个特大盗窃集团过程 中,获得藏有宝物的密码箱,密码究竟 是什么呢?请看信息: ABCDEF( 每个字 母表示一个数字 ) A :是所有自然数的因数 B :既有因数 5 ,又是 5 的倍数 C :既是偶数又是质数 D :既是奇数又是合数 EF :是 2 、 3 、 5 的最小公倍数.
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
请同学们仔细观察下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线 都经过同一点, 那么这样的两个图形叫做位似图形, 这个点叫做位 似中心.
表单自定义 “ 表单自定义 ” 功能是用于制作表单的 工具,用数飞 OA 提供的表单自定义 功能能够快速制作出内容丰富、格 式规范、美观的表单。
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
8.1 二元一次方程组. 篮球联赛中,每场比赛都要分出胜负,每队 胜一场得 2 分,负一场得 1 分. 如果某队为了争取 较好名次,想在全部 22 场比赛中得 40 分,那么这 个队胜负场数应分别是多少 ? 引 言引 言 用学过的一元一次方 程能解决此问题吗? 这可是两个 未知数呀?
第四章 不定积分. 二、 第二类换元积分法 一、 第一类换元积分法 4.2 换元积分法 第二类换元法 第一类换元法 基本思路 设 可导, 则有.
逻辑设计基础 1 第 7 章 多级与(或)非门电路 逻辑设计基础 多级门电路.
人 有 悲 欢 离 合, 月有阴晴圆缺。月有阴晴圆缺。 华师大版七年级数学第二册 海口市第十中学 数学组 吴锐.
§5.6 利用希尔伯特 (Hilbert) 变换 研究系统的约束特性 希尔伯特变换的引入 可实现系统的网络函数与希尔伯特变换.
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
本章讨论有限自由度结构系统,在给定载荷和初始条件激励下的系统动力响应计算方法。 第 六 章
§7.2 估计量的评价标准 上一节我们看到,对于总体 X 的同一个 未知参数,由于采用的估计方法不同,可 能会产生多个不同的估计量.这就提出一 个问题,当总体的一个参数存在不同的估 计量时,究竟采用哪一个好呢?或者说怎 样评价一个估计量的统计性能呢?下面给 出几个常用的评价准则. 一.无偏性.
Lecture 3: Boolean Algebra
Presentation transcript:

吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十九讲 ) 离散数学

例 设 S 是一个集合, ρ ( S )是 S 的幂集合,集合 的交( ∩ ),并(∪)是 ρ ( S )上的两个代数运算, 于是,( ρ ( S ), ∩ ,∪) 是一个格。而由例 知 ( ρ ( S ),  )是半序格。 易见对 A  B  A∩B = A  A ∪ B = B 。

例 设 I + 是所有正整数 集合,两个正整数的最高公 因 × ,  最小公倍可看做是 I + 上两个代数运算,于是, ( I + , × ,  )是一个格。 而由例 知( I + , D )是半 序格。易见,对任意 a , b  I + , a D b  a×b = a  a  b = b 。 例 设 n 是一个正整数, S n 是 n 的所有 因数的集合, 两个正整数的最高公因 ×, 最 小公倍  可看做是 S n 上两个代数运算, 于 是, ( S n , × ,  )是一个格。

定理 定义 A 所定义的格 和定义 B 所定义的格是等价的, 亦即,一个部份序格必是一个 代数格;反之亦然。 证明: i )若( L , ≤ )是一个格, 则对任意 a , b ∈ L ,记 inf{a , b} 为 a×b ; sup{a , b} 为 a  b 。由于对任意 a,b, 其 inf{a , b},sup{a , b} 是唯一的,所 以,如上定义的 × ,  是集合 L 上的两种 二元代数运算。不难证明,对于 × ,  满 足交换律,结合律,吸收律。我们只证 明吸收律: a× ( a  b ) =a 其它算律的证明留给读者。

因为 a× ( a  b )是 a 与( a  b ) 的最大下界,所以 a× ( a  b ) ≤a ;另一方面, 由于 a≤a , a≤a  b ,所以, a 是 a 与 a  b 的下界, 故 a≤a× ( a  b ), 故 a = a× ( a  b )。 因此,根据定义 B ,( L , × ,  )是一个 格。 ii )若代数系统( L,×,  )是一个格, 在集合 L 上定义一个关系 ≤ 如下: 对任意 a , b ∈ L , a≤b  a×b=a 往证: ≤ 是一个部份序关系。

因为 a×a=a× ( a ( a×a )) =a 所以有 a≤a 。 若有 a≤b,b≤a, 则应有 a×b=a , b×a=b ,而 a×b = b×a , 所以 a=b 。 若 a≤b , b≤c ,则有 a×b=a , b×c=b ,故 a×c= ( a×b ) ×c = a× ( b×c ) = a×b = a ,亦即,有 a≤c 。 由此证明了关系 ≤ 具有反身性, 反对称性,传递性。故 ≤ 是部份序关系。

不难证明: a×b = a  a  b = b 。 若 a×b = a ,则 a  b = ( a×b )  b=b 。 若 a  b = b ,则 a×b=a× ( a  b ) =a 。 因此,对任意 a , b ∈ L , a≤b a  b = b 。 下面证明,对任意 {a , b}  L , 存在 inf{a , b} , sup{a , b} ,

由吸收律知 a× ( a  b ) = a , b× ( a  b ) = b , 故有 a≤ ( a  b ), b≤ ( a  b )。 亦即, a  b 是 {a , b} 的上界。 若 c ∈ L ,且 c 是 {a , b} 的上界, 亦即有 a≤c , b≤c ,则应有 a  c=c , b  c=c ,于是, ( a  b )  c = ( a  b )  ( c  c ) = ( a  c )  ( b  c ) = c  c = c 故有( a  b ) ≤c 。这就说明了( a  b )是 {a , b} 的最小上界, 即 sup{a , b} = ( a  b )。

同理可证, inf{a , b} = ( a×b )。 故( L , ≤ )称为半序格, ( L , × ,  )称为代数格。 由此定理知, 给出一个半序格 ( L,≤ ), 就有一个与之等价 的代数格( L , × ,  )。反之, 给出一个代数格( L , × ,  ),就有一个 与之等价的半序格( L , ≤ )。 互为等价的两个格 :(L,≤) 和 (L,×,  ), 其 × ,  分别是在部份序关系 ≤ 下的最大下界运算 和最小上界运算。 今后,提到一个格,可随便将其理解为半 序格或者是与之等价的代数格。

定义 B′ 设( L , × ,  ) 是一个格, S 是 L 的一个子集, (S,×,  ) 称为 (L,×,  ) 的一 个子格,当且仅当在运算 ×,  下, S 是封闭的。 显然,子格是一个格。 例如,( S n , × ,  )是 ( I + , × ,  )的子格,其中 × ,  分别是 最高公因和最小公倍。 从定义 B′ 不难说明,若( L , × ,  )是一 个格,S  L, 并且( S,×,  )也是格, 则( S,×,  )是( L,×,  )的子格。 亦即 : ( S,×,  )是格( L,×,  )的子格的充 要条件是: S  L 且( S , × ,  )是一个 格。

最后指出一点:设( L , ≤ ) 是一个格,与其等价的代数 格为( L , × ,  ), S 是 L 的 一个子集。若( S , × ,  )是定 义 B′ 下的( L , × ,  )的子 格,则显然,( S , ≤ )是定 义 A′ 下的( L , ≤ )的子格;若 (S,≤) 是定义 A′ 下的( L , ≤ )的子格, 则( S , × ,  )不一定是定义 B′ 下的 ( L , × ,  )的子格。 例如:设( L , ≤ )是如下图的一个格,其 中 L={a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8 } 。

取 S 1 ={a 1 , a 2 , a 4 , a 6 } ,则( S 1 , ≤ )是 ( L , ≤ )的子格(定义 A ′ ), 也是 ( L,×,  )的子格(定义 B ′ )。 取 S 2 ={a 1 , a 2 , a 4 , a 8 } ,则( S 2 , ≤ )是 ( L , ≤ )的子格(定义 A ′ ), 但是( S 2 , × ,  )不是( L , × ,  )的 子格(定义 B ′ )。因为, a 2 × a 4 =a 6 ,而 a 6  S 2, 亦即, S 2 在运算 × 下不是封闭的。 a6a6 a3a3 a1a1 a2a2 a4a4 a5a5 a8a8 a7a7