International Conference “Recent Problems in Computational Mathematics and Mathematical Modeling” November, 29 – 30, 2010, Moscow, Russia Past, Present.

Slides:



Advertisements
Similar presentations
Introduction Irina Surface layer and surface fluxes Anton
Advertisements

ESC Global Climate Change Chapter 5
A NUMERICAL PREDICTION OF LOCAL ATMOSPHERIC PROCESSES A.V.Starchenko Tomsk State University.
Section 2: The Planetary Boundary Layer
International Conference on Environmental Observations, Modeling and Information Systems ENVIROMIS July 2004, Tomsk, Russia Mathematical modeling.
International Conference on Environmental Observations, Modeling and Information Systems ENVIROMIS July 2004, Akademgorodok, Tomsk, Russia Modeling.
International Conference on Environmental Observations, Modeling and Information Systems ENVIROMIS July 2004, Tomsk, Russia International Conference.
The Problem of Parameterization in Numerical Models METEO 6030 Xuanli Li University of Utah Department of Meteorology Spring 2005.
Numerical Modeling of Climate Hydrodynamic equations: 1. equations of motion 2. thermodynamic equation 3. continuity equation 4. equation of state 5. equations.
Sensitivity of the climate system to small perturbations of external forcing V.P. Dymnikov, E.M. Volodin, V.Ya. Galin, A.S. Gritsoun, A.V. Glazunov, N.A.
Chapter 3 Steady-State Conduction Multiple Dimensions
DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 16: 05/20/2010 ATM S 111, Global Warming: Understanding the Forecast.
Earth Systems Science Chapter 6 I. Modeling the Atmosphere-Ocean System 1.Statistical vs physical models; analytical vs numerical models; equilibrium vs.
Earth Systems Science Chapter 4 PART I. THE CIRCULATION SYSTEM Convection and advection, the Ideal Gas Law Global energy distribution General circulation.
A Concept of Environmental Forecasting and Variational Organization of Modeling Technology Vladimir Penenko Institute of Computational Mathematics and.
1 NGGPS Dynamic Core Requirements Workshop NCEP Future Global Model Requirements and Discussion Mark Iredell, Global Modeling and EMC August 4, 2014.
HWRF Model Sensitivity to Non-hydrostatic Effects Hurricane Diagnostics and Verification Workshop May 4, 2009 Katherine S. Maclay Colorado State University.
Chapter 13 – Weather Analysis and Forecasting. The National Weather Service The National Weather Service (NWS) is responsible for forecasts several times.
Dynamics Energetics of General Circulation In the previous lecture we discussed the characteristics of the general circulation of the atmosphere In today’s.
Photochemical and aerosol pollution of the environment in the regional and global scales accounting for kinetic processes of transformation A.E.Aloyan.
Eurocode 1: Actions on structures – Part 1–2: General actions – Actions on structures exposed to fire Part of the One Stop Shop program Annex D (informative)
Coupled GCM The Challenges of linking the atmosphere and ocean circulation.
Evaporation Slides prepared by Daene C. McKinney and Venkatesh Merwade
NUMERICAL WEATHER PREDICTION K. Lagouvardos-V. Kotroni Institute of Environmental Research National Observatory of Athens NUMERICAL WEATHER PREDICTION.
Calculating leaf wetness duration in an apple orchard Tor Håkon Sivertsen The Norwegian Crop Research Institute.
Coupled Climate Models OCEAN-ATMOSPHEREINTERACTIONS.
1 Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations Cristiana Stan School and Conference on “the General Circulation.
1.Introduction 2.Description of model 3.Experimental design 4.Ocean ciruculation on an aquaplanet represented in the model depth latitude depth latitude.
NATS 101 Section 13: Lecture 24 Weather Forecasting Part I.
Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical.
Modelling of climate and climate change Čedo Branković Croatian Meteorological and Hydrological Service (DHMZ) Zagreb
NUMERICAL MODELING OF THE OCEAN AND MARINE DYNAMICS ON THE BASE OF MULTICOMPONENT SPLITTING Marchuk G.I., Kordzadze A.A., Tamsalu R, Zalesny V.B., Agoshkov.
Operational sub-regional Long-Range Forecasting Unit at RA VI Regional Climate Center – South-East European Virtual Climate Change Center Vladimir Djurdjevic.
Test Review Weather. Definition of Weather All the various phenomena that occur in the atmosphere of a planet The specific condition of the atmosphere.
The Atmosphere: Part 3: Unsaturated convection Composition / Structure Radiative transfer Vertical and latitudinal heat transport Atmospheric circulation.
How Small-Scale Turbulence Sets the Amplitude and Structure of Tropical Cyclones Kerry Emanuel PAOC.
Climate Modeling Idania Rodriguez EEES PhD Student Idania Rodriguez EEES PhD Student “Science Explorations Through the Lens of Global Climate Change” Workshop.
Chapter 23 The Atmosphere, Climate, and Global Warming.
Weather Review. Air Masses Air Mass – A large body of air through which temperature and moisture are the same. Types 1. Continental – formed over land.
Dynamics of Climate Variability & Climate Change Dynamics of Climate Variability & Climate Change EESC W4400x Fall 2006 Instructors: Lisa Goddard, Mark.
A Numerical Study of Early Summer Regional Climate and Weather. Zhang, D.-L., W.-Z. Zheng, and Y.-K. Xue, 2003: A Numerical Study of Early Summer Regional.
Climate Modeling Research & Applications in Wales John Houghton C 3 W conference, Aberystwyth 26 April 2011.
Quaternary Environments Paleoclimate Models. Types of Models  Simplify a system to its basic components  Types of Models  Physical Models  Globe 
Modeling and Evaluation of Antarctic Boundary Layer
A Brief Introduction to CRU, GHCN, NCEP2, CAM3.5 Yi-Chih Huang.
Earth system model of INM RAS Volodin E.M., Galin V.Ya., Diansly N.A., Gusev A.V., Smyshlyaev S.P., Yakovlev N.G. Institute of Numerical Mathematics RAS.
Vincent N. Sakwa RSMC, Nairobi
Interannual to decadal variability of circulation in the northern Japan/East Sea, Dmitry Stepanov 1, Victoriia Stepanova 1 and Anatoly Gusev.
Botkin and Keller Environmental Science 5e Chapter 22 The Atmosphere, Climate, and Global Warming.
An advanced snow parameterization for the models of atmospheric circulation Ekaterina E. Machul’skaya¹, Vasily N. Lykosov ¹Hydrometeorological Centre of.
4-1 THE ROLE OF CLIMATE MAIN IDEAS 1.Weather 2.Climate 3.Greenhouse effect 4.Polar Zone 5.Temperate Zone 6.Tropical Zone Objective Identify the variables.
Chapter 16 Global Climate Change. 1. Weather = state of the atmosphere at a particular place at a particular moment. 2. Climate is the long-term weather.
15 Annual AOMIP Meeting. WHOI, 1- 4 November 2011 Numerical modeling of the Atlantic Water distribution in the upper Arctic Ocean: Sensitivity studies.
Radiative-Convective Model. Overview of Model: Convection The convection scheme of Emanuel and Živkovic-Rothman (1999) uses a buoyancy sorting algorithm.
Transferência de Energia e de Massa Energy and Mass Transfer Lecture 1: Introduction to the subject and to the course 1.
Global Warming The heat is on!. What do you know about global warming? Did you know: Did you know: –the earth on average has warmed up? –some places have.
Climate models 101 for air quality Anand Gnanadesikan Department of Earth and Planetary Sciences Johns Hopkins University GAIA Conference on Climate Change.
Intro to Climate Modeling. Climate Model Types Box Model – ecosystems/studies of ocean circulation Zero-dimensional – effect of changes in solar output.
1. Introduction * What are we going to learn in atmospheric physics? In Mteor 341: 1) Atmospheric Thermodynamics; 2) Atmospheric Hydrostatics. In Mteor.
Tropical dynamics and Tropical cyclones
Climate vs Weather.
Air mass Atmosphere Front Isobar Isotherm Forecast Convection
A Brief Introduction to CRU, GHCN, NCEP2, CAM3.5
Climate , Climate Change, and climate modeling
Atmosphere & Weather Review
Climate Dynamics 11:670:461 Alan Robock
Modeling the Atmos.-Ocean System
Introduction to Meteorology
A buoyancy-based turbulence mixing length technique for cloudless and cloudy boundary layers in the COSMO model Veniamin Perov and Mikhail Chumakov.
Presentation transcript:

International Conference “Recent Problems in Computational Mathematics and Mathematical Modeling” November, 29 – 30, 2010, Moscow, Russia Past, Present and Future of Atmospheric Circulation Studies at INM RAS V.P. Dymnikov V.P. Dymnikov Institute for Numerical Mathematics, RAS

Introduction - I In the atmospheric sciences there are two main problems – weather prediction and climate change. These problems are connected each other. Let’s imagine that we have ideal mathematical model of climate system. Let A- global attractor of this model, m* – probabilistic ergodic invariant mesure on A. Then : Weather prediction : convergence of m(t) = B(m(t0)) to m*

Introduction - II Climate change : delta m* Mean rate of convergence m(t) to m* on A is climatic characteristic and defines the weather predictability. The predictability time is defined, in particular by energy and enstrophy transfer along spectra. Therefore I’l consider our achievements in both problems. Because the roots of INM belong to Computer Centre of SB of AS I’l begin the consideration of past from the period of our work in CC.

Large-scale hydro-thermodynamics of the atmosphere Subgrid-scale processes: parameterization

Parameterization of subgrid-scale processes Turbulence in the atmospheric boundary layer, upper ocean layer and bottom boundary layer Convection and orographic waves Diabatic heat sources (radiative and phase changes, cloudiness, precipitation, etc.) Carbon dioxide cycle and photochemical transformations Heat, moisture and solute transport in the vegetation and snow cover Production and transport of the soil methane Etc.

Weather prediction ( )-I Model: Primitive hydrostatic hydrodynamic equations, Transport of humidity fields, Boundary layer (calculation of air surface temperature and wind), Precipitation

Weather prediction ( )-II What was original (complitly new)? 1. Splitting-up method of solution (transport, adaptation, physics) 2. Reduction on three-dimensional adaptation system to the few two-dimensional problems 3. New equation for the transport humidity, condensation and precipitation 4. SOS-scheme (control energy scheme)

Weather prediction ( )-III Project PASP (Hydrometeorological Institute, Novosibirsk, ): Data –analysis – model –postprocessing (Computer Vesna, 200 Kflops, Levin) Present time: Semi-Lagrangian operative model of medium- range weather forecast (INM – HMC – Meteo-France )

Coupled model of general circulation of the atmosphere and ocean ( ) - I What was original (new )? 1. Symmetrization of primitive equations 2. Exact conservation of energy by finite-difference approximation (adiabatic approximation ) 3. Original parameterizations of all sub-grid physical processes 4. Splitting-up method 5. Factorization of implicit scheme 6. Reduced grid for iteration processes

Conservation laws 1. Mass conservation 2. Angular momentum balance 3. Total energy balance If then there is total energy conservation law

Для адиабатической атмосферы интегральный закон сохранения полной энергии не является квадратичным, так что выполнение его в конечномерном аналоге не обеспечивает вычислительной устойчивости. Если сделать замену переменных то закон сохранения будет иметь вид так что систему уравнений термогидродинамики атмосферы можно представить в виде:

Схема Кранка-Николсон обеспечивает точный закон сохранения энергии для конечно-мерной аппроксимации, если оператор задачи аппроксимируется кососимметрической матрицей (что делается элементарно): Если то метод расщепления также обеспечивает такое сохранение полной энергии (квадратичной формы), что обеспечивает и вычислительную устойчивость. Модель циркуляции атмосферы и океана на основе этой идеи была построена и описана в монографии (Г.И. Марчук, В.П. Дымников, В.Б. Залесный, В.Н. Лыкосов, В.Я. Галин. Математическое моделирование общей циркуляции атмосферы и океана. – Л.: Гидрометеоиздат, 1984 г., 320 с.)

Coupled model of general circulation of the atmosphere and ocean ( ) - II First version -10 degrees in longitude, 6 degrees in latitude, 3 vertical levels (10x6x3) Shortcomings: 1. Upper boundary condition (much better for so crude approximation to have the boundary condition on tropopouse) 2. Wrong transfer energy along spectra for “real” orography 3. No local balances G.I. Marchuk, V.P. Dymnikov, V.B. Zalesny, V.N. Lykossov, V.Ya. Galin “Mathematical modeling of general circulation of the atmosphere and ocean“, 1984, Leningrad, Gidrometeoizdat

Coupled model of general circulation of the atmosphere and ocean ( ) - III Next version: 1. conservation of potential enstrophy in two- dimensional approximation 2. Semi-explicit scheme in time Shortcoming: broad stencil (smoothing of high-frequency mid-scale variability) Resolution: 5x4x21 (good results for 1x1x21) AMIP 1, AMIP2

Среднегодовая ошибка ТПО в модели

Давление на уровне моря в декабре- феврале по данным модели (вверху) и наблюдений (внизу)

Температура в декабре- феврале по данным модели (вверху) и наблюдений (внизу)

U-компонента скорости ветра в декабре- феврале по данным модели (вверху) и наблюдений (внизу)

Среднеквадратичное отклонение ТПО в районе Эль-Ниньо по данным модели (вверху) и наблюдений (внизу)

Mathematical problems of climate theory - I 1.Global solvability 2.Existence of global attractor. Estimates of dimension 3.Dynamics on attractor. Local and global Lyapunov exponents 4. Stability of attractor (set and ergodic measure) 5.Response operator to small external forcing (FDT-theorem, periodic orbits)

Mathematical problems of climate theory - II 6. Possibility of calculations of response operator for real climate system 7. Approximation of attractor 8. Calculation of stationary points and periodic orbits on attractor 9. Approximation of atmospheric regimes by stationary points and periodic orbits 10. Stabilization of trajectories

Оператор отклика для первого момента (нелинейная теория) Нелинейная модель: ( - белый шум по времени) «Возмущенная» модель:

Стационарный отклик Уравнение Фоккера-Планка для плотности инвариантной меры имеет единственное стационарное решение.

В первом приближении по В случае нормального распределения

Восстановление отклика CCM0 на синусоидальную аномалию нагревания

If we know М we can find the forcing producing given response in the system statistics

Model response (right) onto the heating (top left) was multiplied by the inverse response operator. Reconstructed forcing is shown on the (bottom left) Apply the forcing to the model, get Reconstruct the forcing as How it works for CCM0?

Projects Modeling of climate and climate change Mathematical modeling of regional climate processes Construction of computational core for Earth System Model of new generation (petascale and exascale computations) Mathematical problems of climate theory

Thank you for your attention!