1 Pertemuan 06 Sebaran Penarikan Contoh Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.

Slides:



Advertisements
Similar presentations
University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) Inferential Statistics.
Advertisements

Pertemuan 03 Teori Peluang (Probabilitas)
1 Pertemuan 07 Hitung Peluang Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Pendugaan Parameter Nilai Tengah Pertemuan 13 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Analisis Varians/Ragam Klasifikasi Dua Arah Pertemuan 18 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 11 Matakuliah: I0014 / Biostatistika Tahun: 2005 Versi: V1 / R1 Pengujian Hipotesis (I)
1 Pertemuan 02 Analisis Data Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
Pengujian Hipotesis Nilai Tengah Pertemuan 15 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Regresi dan Korelasi Linear Pertemuan 19
Peubah Acak Kontinu Pertemuan 09 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 04 Ukuran Pemusatan dan Penyebaran Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Uji Kebaikan Suai (Uji Kecocokan) Pertemuan 23
1 Pertemuan 07 Variabel Acak Diskrit dan Kontinu Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
1 Pertemuan 15 Pendugaan Parameter Nilai Tengah Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 09 Peubah Acak Kontinu Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 07 Peubah Acak Diskrit Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 20 Time & Condition Clauses with Future reference Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 09 Pengujian Hipotesis 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 10 Analisis Ragam (Varians) - 1 Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Sampling and Sampling Distributions Simple Random Sampling Point Estimation Sampling Distribution.
1 Pertemuan 08 Pengujian Hipotesis 1 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
QMS 6351 Statistics and Research Methods Chapter 7 Sampling and Sampling Distributions Prof. Vera Adamchik.
1 Pertemuan 05 Peubah Acak Kontinu dan Fungsi Kepekatannya Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Korelasi dan Regresi Linear Sederhana Pertemuan 25
Chapter 7 Sampling and Sampling Distributions Sampling Distribution of Sampling Distribution of Introduction to Sampling Distributions Introduction to.
1 Pertemuan 11 Sampling dan Sebaran Sampling-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 13 Regresi Linear dan Korelasi Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Chapter 7 Sampling and Sampling Distributions n Simple Random Sampling n Point Estimation n Introduction to Sampling Distributions n Sampling Distribution.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western/Thomson Learning.
1 1 Slide © 2003 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2001 South-Western/Thomson Learning  Anderson  Sweeney  Williams Anderson  Sweeney  Williams  Slides Prepared by JOHN LOUCKS  CONTEMPORARYBUSINESSSTATISTICS.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2005 Thomson/South-Western Chapter 7, Part A Sampling and Sampling Distributions Sampling Distribution of Sampling Distribution of Introduction.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved OPIM 303-Lecture #5 Jose M. Cruz Assistant Professor.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 7 Sampling and Sampling Distributions Sampling Distribution of Sampling Distribution.
1 Chapter 7 Sampling and Sampling Distributions Simple Random Sampling Point Estimation Introduction to Sampling Distributions Sampling Distribution of.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
Sampling and sampling distibutions. Sampling from a finite and an infinite population Simple random sample (finite population) – Population size N, sample.
1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 Chapter 7 Sampling Distributions. 2 Chapter Outline  Selecting A Sample  Point Estimation  Introduction to Sampling Distributions  Sampling Distribution.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 01 Data dan Statistika Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 14 Peubah Acak Normal Matakuliah: I0134-Metode Statistika Tahun: 2007.
Sebaran sampling Pertemuan 5 Matakuliah: D Statistika dan Aplikasinya Tahun: 2010.
1 Pertemuan 13 Selang Kepercayaan-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 24 Uji Kebaikan Suai Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Sebaran Normal dan Normal Baku Pertemuan 11 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Fundamentals of Business Statistics chapter7 Sampling and Sampling Distributions 上海金融学院统计系 Statistics Dept., Shanghai Finance University.
1 Pertemuan 19 Analisis Varians Klasifikasi Satu Arah Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Rancangan Acak Lengkap ( Analisis Varians Klasifikasi Satu Arah) Pertemuan 16 Matakuliah: I0184 – Teori Statistika II Tahun: 2009.
Pertemuan 17 Analisis Varians Klasifikasi Satu Arah
Pertemuan 01 Data dan Statistika
Pertemuan 10 Analisis data -I
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Pertemuan 22 Analisis Varians Untuk Regresi
Pertemuan 17 Pengujian Hipotesis
St. Edward’s University
Pertemuan 13 Pendugaan Parameter Nilai Tengah
Pertemuan 13 Sebaran Seragam dan Eksponensial
Econ 3790: Business and Economics Statistics
Pertemuan 18 Pengujian Hipotesis Lanjutan
Chapter 7 Sampling and Sampling Distributions
Presentation transcript:

1 Pertemuan 06 Sebaran Penarikan Contoh Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitungdalil lianit pusat, sebaran X2, t dan F.

3 Outline Materi Sebaran nilai tengah contoh Dalil limit pusat Sebaran Khi-kuadrat Sebaran ragam contoh Sebaran t, standar Sebaran F

4 Sampling and Sampling Distributions Simple Random Sampling Point Estimation Introduction to Sampling Distributions Sampling Distribution of Properties of Point Estimators Other Sampling Methods n = 100 n = 30

5 Statistical Inference The purpose of statistical inference is to obtain information about a population from information contained in a sample. A population is the set of all the elements of interest. A sample is a subset of the population. The sample results provide only estimates of the values of the population characteristics. A parameter is a numerical characteristic of a population. With proper sampling methods, the sample results will provide “good” estimates of the population characteristics.

6 Simple Random Sampling Finite Population –Replacing each sampled element before selecting subsequent elements is called sampling with replacement. –A simple random sample from a finite population of size N is a sample selected such that each possible sample of size n has the same probability of being selected. –Sampling without replacement is the procedure used most often. –In large sampling projects, computer-generated random numbers are often used to automate the sample selection process.

7 Infinite Population –A simple random sample from an infinite population is a sample selected such that the following conditions are satisfied. Each element selected comes from the same population. Each element is selected independently. –The population is usually considered infinite if it involves an ongoing process that makes listing or counting every element impossible. –The random number selection procedure cannot be used for infinite populations. Simple Random Sampling

8 Point Estimation In point estimation we use the data from the sample to compute a value of a sample statistic that serves as an estimate of a population parameter. We refer to as the point estimator of the population mean . s is the point estimator of the population standard deviation . is the point estimator of the population proportion p.

9 Sampling Distribution of Process of Statistical Inference Population Population with mean  = ? Population Population with mean  = ? A simple random sample of n elements is selected from the population. The sample data provide a value for the sample mean. The sample data provide a value for the sample mean. The value of is used to make inferences about the value of . The value of is used to make inferences about the value of .

10 The sampling distribution of is the probability distribution of all possible values of the sample mean. Expected Value of E( ) =  where:  = the population mean Sampling Distribution of

11 n Standard Deviation of Finite Population Infinite Population Finite Population Infinite Population A finite population is treated as being infinite if n / N <.05. A finite population is treated as being infinite if n / N <.05. is the finite correction factor. is the finite correction factor. is referred to as the standard error of the mean. is referred to as the standard error of the mean. Sampling Distribution of

12 If we use a large (n > 30) simple random sample, the central limit theorem enables us to conclude that the sampling distribution of can be approximated by a normal probability distribution. When the simple random sample is small (n < 30), the sampling distribution of can be considered normal only if we assume the population has a normal probability distribution. Sampling Distribution of

13 The sampling distribution of is the probability distribution of all possible values of the sample proportion Expected Value of where: p = the population proportion Sampling Distribution of

14 Sampling Distribution of Standard Deviation of Finite Population Infinite Population – is referred to as the standard error of the proportion.

15 Selamat Belajar Semoga Sukses.