Business Intelligence. On-Line Analytical Processing (OLAP) Tools The use of a set of graphical tools that provides users with multidimensional views.

Slides:



Advertisements
Similar presentations
IS 4420 Database Fundamentals Chapter 11: Data Warehousing Leon Chen
Advertisements

Data Warehousing and Decision Support, part 2
Jennifer Widom On-Line Analytical Processing (OLAP) Introduction.
Data Warehousing - 2 ISYS 650. Data Warehouse Design - Star Schema - Dimension tables – contain descriptions about the subjects of the business such as.
Decision Support and Data Warehouse. Decision supports Systems Components Data management function –Data warehouse Model management function –Analytical.
Decision Support Systems. Decision Support Trends The emerging class of applications focuses on –Personalized decision support –Modeling –Information.
Online Analytical Processing. On-Line Analytical Processing (OLAP) Tools The use of a set of graphical tools that provides users with multidimensional.
Data Sources Data Warehouse Analysis Results Data visualisation Analytical tools OLAP Data Mining Overview of Business Intelligence Data visualisation.
Data Warehousing - 3 ISYS 650. Snowflake Schema one or more dimension tables do not join directly to the fact table but must join through other dimension.
COMP 578 Data Warehousing And OLAP Technology Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University.
Data Warehousing. On-Line Analytical Processing (OLAP) Tools The use of a set of graphical tools that provides users with multidimensional views of their.
CSE6011 Warehouse Models & Operators  Data Models  relations  stars & snowflakes  cubes  Operators  slice & dice  roll-up, drill down  pivoting.
Data Warehousing ISYS 650. What is a data warehouse? A data warehouse is a subject-oriented, integrated, nonvolatile, time-variant collection of data.
1 © Prentice Hall, 2002 Chapter 11: Data Warehousing.
XCube XML For Data Warehouses By Sven Groot. Data warehouses Contains data drawn from several databases and external sources Contains data drawn from.
Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Decision Support Chapter 23.
Business Intelligence. Topics Chart Online Analytical Process, OLAP – Excel’s Pivot table – Data visualization with dashboard Data warehousing Data Mining.
 First two parts of class ◦ Part 1: What is business intelligence and why should organizations consider incorporating more technology-related intelligence.
DATA WAREHOUSING IN SQL SERVER 2005/2008 BUSINESS INTELLIGENCE.
Business Intelligence - 1 BUS 782. Topics Scenario Management Chart Online Analytical Process, OLAP – Excel’s Pivot table/Pivot chart Import/Export Data.
DW-1: Introduction to Data Warehousing. Overview What is Database What Is Data Warehousing Data Marts and Data Warehouses The Data Warehousing Process.
Chapter 6 SAS ® OLAP Cube Studio. Section 6.1 SAS OLAP Cube Studio Architecture.
Presented By: Muhammad Rizvi Raghuram Vempali Surekha Vemuri.
Online Analytical Processing. On-Line Analytical Processing (OLAP) Tools The use of a set of graphical tools that provides users with multidimensional.
CS 157B: Database Management Systems II March 20 Class Meeting Department of Computer Science San Jose State University Spring 2013 Instructor: Ron Mak.
DIMENSIONAL MODELLING. Overview Clearly understand how the requirements definition determines data design Introduce dimensional modeling and contrast.
1 Data Warehouses BUAD/American University Data Warehouses.
OLAP & DSS SUPPORT IN DATA WAREHOUSE By - Pooja Sinha Kaushalya Bakde.
Data Warehousing.
October 28, Data Warehouse Architecture Data Sources Operational DBs other sources Analysis Query Reports Data mining Front-End Tools OLAP Engine.
New Developments in Business Intelligence ( Decision Support Systems) BUS 782.
By N.Gopinath AP/CSE. There are 5 categories of Decision support tools, They are; 1. Reporting 2. Managed Query 3. Executive Information Systems 4. OLAP.
Business Intelligence BUS 782. Topics Import/Export Data Chart Online Analytical Process, OLAP – Excel’s Pivot table/Pivot chart Scenario Management Data.
Chapter 5 DATA WAREHOUSING Study Sections 5.2, 5.3, 5.5, Pages: & Snowflake schema.
1 On-Line Analytic Processing Warehousing Data Cubes.
Decision supports Systems Components
CMPE 226 Database Systems October 21 Class Meeting Department of Computer Engineering San Jose State University Fall 2015 Instructor: Ron Mak
ADVANCED TOPICS IN RELATIONAL DATABASES Spring 2011 Instructor: Hassan Khosravi.
Business Intelligence - 2 BUS 782. Topics Data warehousing Data Mining.
Business Intelligence. Topics Chart Online Analytical Process, OLAP – Excel’s Pivot table – Data visualization with dashboard Scenario Management Data.
A POWER OF OLAP TECHNOLOGY National Technical University of Ukraine “Kiev Polytechnic Institute” Heat and energy design faculty Department of automation.
Business Intelligence Transparencies 1. ©Pearson Education 2009 Objectives What business intelligence (BI) represents. The technologies associated with.
OLAP On Line Analytic Processing. OLTP On Line Transaction Processing –support for ‘real-time’ processing of orders, bookings, sales –typically access.
Pooja Sharma Shanti Ragathi Vaishnavi Kasala. BUSINESS BACKGROUND Lowe's started as a single hardware store in North Carolina in 1946 and since then has.
Data Warehousing.
Advanced Database Concepts
The Data Warehouse Chapter Operational Databases = transactional database  designed to process individual transaction quickly and efficiently.
Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Chapter 6 The Data Warehouse Jason C. H. Chen, Ph.D. Professor of MIS School of Business Administration.
Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Data Warehousing and Decision Support.
 Definition of terms  Reasons for need of data warehousing  Describe three levels of data warehouse architectures  Describe two components of star.
The Need for Data Analysis 2 Managers track daily transactions to evaluate how the business is performing Strategies should be developed to meet organizational.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Data Warehousing and Decision Support Chapter 25.
Copyright © 2016 Pearson Education, Inc. Modern Database Management 12 th Edition Jeff Hoffer, Ramesh Venkataraman, Heikki Topi CHAPTER 11: BIG DATA AND.
1 Management Information Systems M Agung Ali Fikri, SE. MM.
Data Warehousing and OLAP Outline u Models & operations u Implementing a warehouse u Future directions.
The Concepts of Business Intelligence Microsoft® Business Intelligence Solutions.
BUSINESS INTELLIGENCE. The new technology for understanding the past & predicting the future … BI is broad category of technologies that allows for gathering,
Decision Support System ISYS 363. Decision supports Systems Components Data management function –Data warehouse Model management function –Analytical.
CMPE 226 Database Systems April 12 Class Meeting Department of Computer Engineering San Jose State University Spring 2016 Instructor: Ron Mak
Business Intelligence Overview
Chapter 13 Business Intelligence and Data Warehouses
Data Warehouse.
Competing on Analytics II
On-Line Analytical Processing (OLAP)
Data Warehouse and OLAP
University of Houston-Clear Lake Kaiser Permanente San Jose
MIS2502: Data Analytics Dimensional Data Modeling
MIS2502: Data Analytics Dimensional Data Modeling
Data Warehouse and OLAP
Online Analytical Processing
Presentation transcript:

Business Intelligence

On-Line Analytical Processing (OLAP) Tools The use of a set of graphical tools that provides users with multidimensional views of their data and allows them to analyze the data using simple windowing techniques OLAP Operations – Cube slicing–come up with 2-D view of data – Drill-down–going from summary to more detailed views – Roll-up – the opposite direction of drill-down – Reaggregation – rearrange the order of dimensions

Slicing a data cube

Example of drill-down Summary report Drill-down with color added Starting with summary data, users can obtain details for particular cells

Excel’s Pivot Table Insert/Pivot Table or Pivot Chart – Drill down, rollup and reaggregation – Filter Pivot Chart – Filter – Drilldown, rollup, reaggregation Import queries from Access to perform analysis. – Sales related to: Customer’s location, Rating and Products

Data Visualization Representing data in graphical/multimedia formats for analysis. – Web-based “dashboards” – Dashboard Samples

Scenario A scenario is an assumption about input variables. Excel’s Scenarios is a what-if-analysis tool. A scenario is a set of values that Microsoft Excel saves and can substitute automatically in your worksheet. You can use scenarios to forecast the outcome of a worksheet model. You can create and save different groups of values on a worksheet and then switch to any of these new scenarios to view different results. Data/What If analysis/Scenario

Creating a Scenario – Add scenario Changing cells – Scenario Summary Resulting cells Demo: benefit363.xls

Data Warehouse Data warehouse is a repository of an organization's electronically stored data. A data warehouse houses a standardized, consistent, clean and integrated form of data that: – sourced from various operational systems in use in the organization, – structured in a way to specifically address the reporting and analytic requirements.

Example: Transaction Database Customer Order Product Has 1 M M M CID Cname City OIDODate PID Pname Price Rating SalesPerson Qty

Analyze Sales Data Detailed Business Data Total sales: – by product: Qty*Price of each detail line Sum (Qty*Price) Detailed business data: qty*price Total quantity sold: – By product: Sum(Qty) Detailed business data: Qty

Dimensions for Data Analysis: Factors relevant to the business data Analyze sales by Product Analyze sales related to Customer: – Location: Sales by City – Customer type: Sales by Rating Analyze sales related to Time: – Quarterly, monthly, yearly Sales Analyze sales related to Employee: – Sales by SalesPerson

Data Warehouse Design - Star Schema - Dimension tables – contain descriptions about the subjects of the business such as customers, employees, locations, products, time periods, etc. Fact table – contain detailed business data with links to dimension tables.

Star Schema FactTable LocationCode PeriodCode Rating PID Qty Amount Location Dimension LocationCode State City CustomerRating Dimension Rating Description Product Dimension PID Pname Category Period Dimension PeriodCode Year Quarter Can group by State, City

Define Location Dimension Location: – In the transaction database: City – In the data warehouse we define Location to be State, City San Francisco -> California, San Francisco Los Angeles -> California, Los Angeles – Define Location Code: California, San Francisco -> L1 California, Los Angeles -> L2

Define Period Dimension Period: – In the transaction database: Odate – In the data warehouse we define Period to be: Year, Quarter Odate: 11/2/2003 -> 2003, 4 Odate: 2/28/2003 -> 2003, 1 – Define Period Code: 2003, 4 -> , 1 -> 20031

The ETL Process E T L One, company- wide warehouse Periodic extraction  data is not completely current in warehouse

The ETL Process Capture/Extract Transform – Scrub(data cleansing),derive – Example: City -> LocationCode, State, City OrderDate -> PeriodCode, Year, Quarter Load and Index ETL = Extract, transform, and load

Performing Analysis Analyze sales: – by Location – By Location and Customer Type – By Location and Period – By Period and Product Pivot Table: – Drill down, roll up, reaggregation