Image Morphing 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 © Alexey Tikhonov.

Slides:



Advertisements
Similar presentations
Planar graphs Algorithms and Networks. Planar graphs2 Can be drawn on the plane without crossings Plane graph: planar graph, given together with an embedding.
Advertisements

Efficient access to TIN Regular square grid TIN Efficient access to TIN Let q := (x, y) be a point. We want to estimate an elevation at a point q: 1. should.
Morphing & Warping 2D Morphing Involves 2 steps 1.Image warping “get features to line up” 2.Cross-dissolve “mix colors” (fade-in/fadeout transition)
Computational Geometry II Brian Chen Rice University Computer Science.
Morphing CSE 590 Computational Photography Tamara Berg.
By Groysman Maxim. Let S be a set of sites in the plane. Each point in the plane is influenced by each point of S. We would like to decompose the plane.
3/5/15CMPS 3130/6130 Computational Geometry1 CMPS 3130/6130 Computational Geometry Spring 2015 Delaunay Triangulations II Carola Wenk Based on: Computational.
Discrete Geometry Tutorial 2 1
2D preobrazba (morphing). 2D preobrazba dekle-tiger.
3. Delaunay triangulation
Delaunay Triangulation Computational Geometry, WS 2006/07 Lecture 11 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
1 Computer Science 631 Lecture 2: Morphing Ramin Zabih Computer Science Department CORNELL UNIVERSITY.
CSCE 641:Computer Graphics Image Warping/Morphing Jinxiang Chai.
Image Warping : Computational Photography Alexei Efros, CMU, Fall 2005 Some slides from Steve Seitz
Homographies and Mosaics : Computational Photography Alexei Efros, CMU, Fall 2005 © Jeffrey Martin (jeffrey-martin.com) with a lot of slides stolen.
Lecture 10 : Delaunay Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Overview Motivation. Triangulation of Planar Point Sets. Definition.
CSCE 641:Computer Graphics Image Warping/Morphing Jinxiang Chai.
Center for Graphics and Geometric Computing, Technion 1 Computational Geometry Chapter 9 Delaunay Triangulation.
Image Morphing : Rendering and Image Processing Alexei Efros.
Computational Photography Image Warping/Morphing Jinxiang Chai.
Lecture 9: Image alignment CS4670: Computer Vision Noah Snavely
Image Morphing, Triangulation CSE399b, Spring 07 Computer Vision.
Image warping/morphing Digital Video Special Effects Fall /10/17 with slides by Y.Y. Chuang,Richard Szeliski, Steve Seitz and Alexei Efros.
Image Morphing, Thin-Plate Spline Model CSE399b, Spring 07 Computer Vision
Image Warping Computational Photography Derek Hoiem, University of Illinois 09/27/11 Many slides from Alyosha Efros + Steve Seitz Photo by Sean Carroll.
Delaunay Triangulations Presented by Glenn Eguchi Computational Geometry October 11, 2001.
Image Morphing CSC320: Introduction to Visual Computing
Image Warping (Szeliski 3.6.1) cs129: Computational Photography James Hays, Brown, Fall 2012 Slides from Alexei Efros and Steve Seitz
CSCE 441: Computer Graphics Image Warping/Morphing Jinxiang Chai.
Warping CSE 590 Computational Photography Tamara Berg.
CS 551/651 Advanced Computer Graphics Warping and Morphing Spring 2002.
Image Warping Computational Photography Derek Hoiem, University of Illinois 09/24/15 Many slides from Alyosha Efros + Steve Seitz Photo by Sean Carroll.
Image Warping / Morphing
Geometric Operations and Morphing.
Image Warping Computational Photography Derek Hoiem, University of Illinois 09/23/10 Many slides from Alyosha Efros + Steve Seitz Photo by Sean Carroll.
Yuanxin Liu, Jack Snoeyink UNC Chapel Hill Bivariate B-Splines From Centroid Triangulations.
1 Adding charts anywhere Assume a cow is a sphere Cindy Grimm and John Hughes, “Parameterizing n-holed tori”, Mathematics of Surfaces X, 2003 Cindy Grimm,
Computational Photography Derek Hoiem, University of Illinois
Image Morphing Computational Photography Derek Hoiem, University of Illinois 10/02/12 Many slides from Alyosha Efros.
Image Warping and Morphing cs195g: Computational Photography James Hays, Brown, Spring 2010 © Alexey Tikhonov.
Advanced Multimedia Warping & Morphing Tamara Berg.
CS559: Computer Graphics Lecture 8: Warping, Morphing, 3D Transformation Li Zhang Spring 2010 Most slides borrowed from Yungyu ChuangYungyu Chuang.
Image Morphing ( Computational Photography) Jehee Lee Seoul National University With a lot of slides stolen from Alexei Efros and Seungyong Lee.
Image Morphing Computational Photography Derek Hoiem, University of Illinois 9/29/15 Many slides from Alyosha Efros.
Multimedia Programming 07: Image Warping Keyframe Animation Departments of Digital Contents Sang Il Park.
UNC Chapel Hill M. C. Lin Delaunay Triangulations Reading: Chapter 9 of the Textbook Driving Applications –Height Interpolation –Constrained Triangulation.
Image Warping and Morphing : Computational Photography Alexei Efros, CMU, Fall 2011 © Alexey Tikhonov.
Image Warping and Morphing © Alexey Tikhonov CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2015.
Multimedia Programming 10: Image Morphing
CS559: Computer Graphics Lecture 9: 3D Transformation and Projection Li Zhang Spring 2010 Most slides borrowed from Yungyu ChuangYungyu Chuang.
Image Warping Many slides from Alyosha Efros + Steve Seitz + Derek oeim Photo by Sean Carroll.
Example: warping triangles Given two triangles: ABC and A’B’C’ in 2D (12 numbers) Need to find transform T to transfer all pixels from one to the other.
CS559: Computer Graphics Lecture 7: Image Warping and Panorama Li Zhang Spring 2008 Most slides borrowed from Yungyu ChuangYungyu Chuang.
Processing Images and Video for An Impressionist Effect Automatic production of “painterly” animations from video clips. Extending existing algorithms.
Image Warping 2D Geometric Transformations
Homographies and Mosaics : Computational Photography Alexei Efros, CMU, Fall 2006 © Jeffrey Martin (jeffrey-martin.com) with a lot of slides stolen.
Image warping/morphing Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2005/3/15 with slides by Richard Szeliski, Steve Seitz and Alexei Efros.
Algorithms and Networks
Image Morphing © Zooface Many slides from Alexei Efros, Berkeley.
Jeremy Bolton, PhD Assistant Teaching Professor
Image warping/morphing
Computational Photography Derek Hoiem, University of Illinois
Computational Photography Derek Hoiem, University of Illinois
Image Warping and Morphing
Recap from Friday Image Completion Synthesis Order Graph Cut Scene Completion.
Lecture 3: Camera Rotations and Homographies
Computer Graphics: Image Warping/Morphing
Image Morphing using mesh warp and feature based warp
Computational Photography Derek Hoiem, University of Illinois
Presentation transcript:

Image Morphing : Computational Photography Alexei Efros, CMU, Fall 2005 © Alexey Tikhonov

Recovering Transformations What if we know f and g and want to recover the transform T? e.g. better align images from Project 1 willing to let user provide correspondences –How many do we need? xx’ T(x,y) yy’ f(x,y)g(x’,y’) ?

Translation: # correspondences? How many correspondences needed for translation? How many Degrees of Freedom? What is the transformation matrix? xx’ T(x,y) yy’ ?

Euclidian: # correspondences? How many correspondences needed for translation+rotation? How many DOF? xx’ T(x,y) yy’ ?

Affine: # correspondences? How many correspondences needed for affine? How many DOF? xx’ T(x,y) yy’ ?

Projective: # correspondences? How many correspondences needed for projective? How many DOF? xx’ T(x,y) yy’ ?

Example: warping triangles Given two triangles: ABC and A’B’C’ in 2D (12 numbers) Need to find transform T to transfer all pixels from one to the other. What kind of transformation is T? How can we compute the transformation matrix: T(x,y) ? A B C A’ C’ B’ SourceDestination

HINT: warping triangles Very useful for Project 2… A B C A’ C’ B’ SourceDestination (0,0)(1,0) (0,1) change of basis Inverse change of basis Don’t forget to move the origin too!

Morphing = Object Averaging The aim is to find “an average” between two objects Not an average of two images of objects… …but an image of the average object! How can we make a smooth transition in time? –Do a “weighted average” over time t How do we know what the average object looks like? We haven’t a clue! But we can often fake something reasonable –Usually required user/artist input

P Q v = Q - P P + 0.5v = P + 0.5(Q – P) = 0.5P Q P + 1.5v = P + 1.5(Q – P) = -0.5P Q (extrapolation) Linear Interpolation (Affine Combination): New point aP + bQ, defined only when a+b = 1 So aP+bQ = aP+(1-a)Q Averaging Points P and Q can be anything: points on a plane (2D) or in space (3D) Colors in RGB or HSV (3D) Whole images (m-by-n D)… etc. What’s the average of P and Q?

Idea #1: Cross-Dissolve Interpolate whole images: Image halfway = (1-t)*Image 1 + t*image 2 This is called cross-dissolve in film industry But what is the images are not aligned?

Idea #2: Align, then cross-disolve Align first, then cross-dissolve Alignment using global warp – picture still valid

Dog Averaging What to do? Cross-dissolve doesn’t work Global alignment doesn’t work –Cannot be done with a global transformation (e.g. affine) Any ideas? Feature matching! Nose to nose, tail to tail, etc. This is a local (non-parametric) warp

Idea #3: Local warp, then cross-dissolve Morphing procedure: for every t, 1.Find the average shape (the “mean dog” ) local warping 2.Find the average color Cross-dissolve the warped images

Local (non-parametric) Image Warping Need to specify a more detailed warp function Global warps were functions of a few (2,4,8) parameters Non-parametric warps u(x,y) and v(x,y) can be defined independently for every single location x,y! Once we know vector field u,v we can easily warp each pixel (use backward warping with interpolation)

Image Warping – non-parametric Move control points to specify a spline warp Spline produces a smooth vector field

Warp specification - dense How can we specify the warp? Specify corresponding spline control points interpolate to a complete warping function But we want to specify only a few points, not a grid

Warp specification - sparse How can we specify the warp? Specify corresponding points interpolate to a complete warping function How do we do it? How do we go from feature points to pixels?

Triangular Mesh 1.Input correspondences at key feature points 2.Define a triangular mesh over the points Same mesh in both images! Now we have triangle-to-triangle correspondences 3.Warp each triangle separately from source to destination How do we warp a triangle? 3 points = affine warp! Just like texture mapping

Triangulations A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and do not contain other points. There are an exponential number of triangulations of a point set.

An O(n 3 ) Triangulation Algorithm Repeat until impossible: Select two sites. If the edge connecting them does not intersect previous edges, keep it.

“Quality” Triangulations Let  (T) = (  1,  2,..,  3t ) be the vector of angles in the triangulation T in increasing order. A triangulation T 1 will be “better” than T 2 if  (T 1 ) >  (T 2 ) lexicographically. The Delaunay triangulation is the “best” Maximizes smallest angles goodbad

Improving a Triangulation In any convex quadrangle, an edge flip is possible. If this flip improves the triangulation locally, it also improves the global triangulation. If an edge flip improves the triangulation, the first edge is called illegal.

Illegal Edges Lemma: An edge pq is illegal iff one of its opposite vertices is inside the circle defined by the other three vertices. Proof: By Thales’ theorem. Theorem: A Delaunay triangulation does not contain illegal edges. Corollary: A triangle is Delaunay iff the circle through its vertices is empty of other sites. Corollary: The Delaunay triangulation is not unique if more than three sites are co-circular. p q

Naïve Delaunay Algorithm Start with an arbitrary triangulation. Flip any illegal edge until no more exist. Could take a long time to terminate.

Delaunay Triangulation by Duality General position assumption: There are no four co-circular points. Draw the dual to the Voronoi diagram by connecting each two neighboring sites in the Voronoi diagram. Corollary: The DT may be constructed in O(nlogn) time. This is what Matlab’s delaunay function uses.

Image Morphing We know how to warp one image into the other, but how do we create a morphing sequence? 1.Create an intermediate shape (by interpolation) 2.Warp both images towards it 3.Cross-dissolve the colors in the newly warped images

Warp interpolation How do we create an intermediate warp at time t? Assume t = [0,1] Simple linear interpolation of each feature pair (1-t)*p1+t*p0 for corresponding features p0 and p1

Other Issues Beware of folding You are probably trying to do something 3D-ish Morphing can be generalized into 3D If you have 3D data, that is! Extrapolation can sometimes produce interesting effects Caricatures

Dynamic Scene

Project #2: Due Tu, Sept 27 Given two photos, produce a 60-frame morph animation Use triangulation-based morphing (lots of helpful Matlab tools) Need to write triangle-to-triangle warp (can’t use Matlab tools) We put all animations together into a movie! Last year’s movie