Predicting the Microstructure and Properties of Steel Welds.

Slides:



Advertisements
Similar presentations
Acero 2000 PHYSICAL METALLURGY AND THERMAL PROCESSING OF STEEL
Advertisements

Metals and Alloys. Alloys Two definitions Combination of two or more elements Combination of two or more metallic elements Metallurgical Commercial.
UNIT 3: Metal Alloys Unit 3 Copyright © 2012 MDIS. All rights reserved. 1 Manufacturing Engineering.
Module 5. Metallic Materials
Chemical composition and heat treatments
Group 2 Steels: Medium Carbon Alloy Steels (0.25 – 0.55 %C)
Mechanical & Aerospace Engineering West Virginia University Strengthening by Phase Transformation.
Welding Metallurgy 2.
University of Cambridge Department of Materials Science and Metallurgy
Neural Networks
S. Terashima and H. K. D. H. Bhadeshia
Radu Calin Dimitriu Modelling the Hot-Strength of Creep-Resistant Ferritic Steels and Relationship to Creep-Rupture.
Performance of Neural Networks. Brief explanation of neural networks Four classes of innovations based on neural networks Are papers on neural networks.
Traveling Speed (mm s-1)
H. Roelofs, S.Hasler, L. Chabbi, U. Urlau, Swiss Steel AG
University of Cambridge Stéphane Forsik 5 th June 2006 Neural network: A set of four case studies.
Simultaneous Transformation Kinetics
Strong & Tough Steel Welds M. Murugananth, H. K. D. H. Bhadeshia E. Keehan, H. O. Andr₫n L. Karlsson.
Microstructural Stability of Strong 9-12Cr Steels 650°C.
POSCO Lectures on Bainite Graduate Institute of Ferrous Technology Microstructure Mechanism Properties Superbainite.
Complete Calculation of Steel Microstructure for Strong Alloys J. Chen, H. K. D. H. Bhadeshia, University of Cambridge S. Hasler, H. Roelofs, U. Ulrau,
Mathematical Models and Novelty in Steels Tata Steel Jamshedpur.
37th John Player Memorial Lecture Design of strong, tough & affordable engineering alloys.
Neural Networks in Design and Manufacture.
UPPER BAINITE (High Temperature) LOWER BAINITE (Low Temperature) Carbon supersaturated plate Carbon diffusion into austenite Carbon diffusion into austenite.
Dominique Carrouge Houston February 2002 Phase Transformation Group H. K. D. H. Bhadeshia MCAS Technology Group Dr. P. Woollin.
Efficient Generation of Electricity
Understanding Transformations in Copper Bearing Low Carbon Steels Teruhisa Okumura Department of Materials Science and Metallurgy University of Cambridge.
Calculation of Time Temperature Transformation Diagrams H. K. D. H. Bhadeshia Metal Science 16 (1982) cml.postech.ac.kr.
GLF Powell, IH Brown, VM Linton; University of Adelaide
Mechanical Properties of Carbide Free Bainitic Steel
RG1 University of Chemical Technology and Metallurgy Department of Materials Science Microstructure and Mechanical Properties of Austempered Ductile Cast.
Unit 3 effect of alloying additions on steel. Austenite-forming elements The elements C, Ni and Mn are the most important ones in this group. Sufficiently.
- heating on at required temperature - dwell at temperature - cooling
A summary on materials selection Some of the major factors in the selection of materials are Strength of the material Corrosion resistance of the material.
NEEP 541 – Radiation Damage in Steels Fall 2002 Jake Blanchard.
Interstitial-Free Steels: Structure of Spot Welds.
Surface hardening.
Objectives: Optimal design of industrial Q&P processing parameters and suitable alloy composition to achieve the best possible combination of strength.
Physical Metallurgy EBB222 Stainless steel.
Contents Background Strain-based design concept Stress-strain curve
Mechanism of the Bainite Transformation in Steels IIT Kharagpur.
Severly Deformed Steels
High-speed steels Service conditions: High contact stresses
Microstructures and Mechanical Properties
Materials Engineering
What are stainless steels?
What science is there in welding?
Niobium microalloyed rail steels
Interplay of Modelling Techniques
Microstructure and properties of high strength weld metals
Carbide-free Rail Steels
Chapter 11: Metal Alloys Heat Treatment
Tempering of low-temperature bainite
Taylor & Thornton, ALSTOM Power, Rugby
Neural Network Analysis
Fe Ru 6d 2s Os Hs.
Laser Hardening of Grey Cast Iron using a High Power Diode Laser
Microstructure & Property
Group 2 Steels: Medium Carbon Alloy Steels (0.25 – 0.55 %C)
Fundamentals and Applications of Bainitic Steels
Bulk Nanocrystalline Steel Phase Transformations and Complex Properties Group Transformation to bainite at temperatures.
Complex Weldment Properties: Trends in Predictive Power
Transformation Plasticity in Steel Welds
Carbide Precipitation in Steel Weld Metals
S. B. Singh1 and H. K. D. H. Bhadeshia2
0.2 µm Jae Hoon Jang, In Gee Kim 7 1 µm.
Bengal Engineering & Science University
Silicon-Rich Bainitic
910 °C Austenite (g) a+g g + cementite ferrite 723 °C Temperature / °C
Presentation transcript:

Predicting the Microstructure and Properties of Steel Welds

MULTIPASS ARC WELD L.-E. SVENSSON

100 µm

20 µm Barrite, 1982

Manual Metal Arc Weld 180 Amps 34 Volts 4 mm/s 200 °C interpass Manual Metal Arc Weld 180 Amps 34 Volts 4 mm/s 200 °C interpass

Fe-0.4C 2. Fe-0.4C-2Si 3. Fe-0.4C-1Ni 4. Fe-0.4C-1Mn 5. Fe-0.4C-1Mn-1Cr 6. Fe-0.4C-2Mn Time / s Temperature / C calculations

Barrite, 1982

5 µm Barrite, 1982

Carbon / wt % Volume fraction Allotriomorphic Widmanstatten Acicular Fe-1Mn-C wt % manual metal arc welds

Bhadeshia & Svensson

Charpy toughness Murugananth & Bhadeshia

7Ni 2Mn

7Ni 0.5Mn

7Ni 2Mn

7Ni 0.5Mn

Weld Shape - Stitch Weld at 2.26 kW Laser Output Laser beam K eyhole L aser beam F usion Z one

 m w

Optically: mainly  -ferrite some w-ferrite <5% martensite TEM:  -ferrite much w-ferrite 155, 157 and 170 HV Mean Hardness: 161 HV Grain size 100 ±20  m 46%  -ferrite 21% w-ferrite 30% acicular ferrite & bainite 3% martensite 168 HV Grain size 103  m Measured Calculated

Charpy fatigue corrosion tensile critical stress intensity

Variables C, Mn, Si, Ni, Cr, Mo, V, Co, B, N, O….. Thermomechanical processing of steel Welding consumable Welding parameters Subsequent heat treatment

Empirical Equations  y = a + b (%C) +c (%Mn) + d (%Ni)....  y = a + b (%C) +c (%Mn) + d (%Ni)

 y = a + b (%C) +c (%Mn) + d(%C x %Mn)  y = a + b (%C) +c (%Mn) + d(%C x %Mn)

 y = a + b (%C) +c (%Mn) + d(%C x %Mn)  y = sin (%C) + tanh (%Mn)  y = a + b (%C) +c (%Mn) + d(%C x %Mn)  y = sin (%C) + tanh (%Mn)

Hyperbolic Tangents

non-linear functions

Predict what the next two numbers are likely to be: 2, 4, 6, 8, …….

Brun, Robson, Narayan, MacKay & Bhadeshia

precipitates solid solution iron + microstructure 550 °C 600 °C Murugananth & Bhadeshia Components of Creep Strength, 2.25Cr1Mo

Cole & Bhadeshia

Cool, 1996

As-welded 600 °C 650 °C 700 °C Cool, 1996

Siemens Mitsui Babcock Nippon Steel ABB

Thank you.