Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.

Slides:



Advertisements
Similar presentations
Introduction to Quantum Teleportation
Advertisements

Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
Memory must be able to store independently prepared states of light The state of light must be mapped onto the memory with the fidelity higher than the.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Single photon sources. Attenuated laser = Coherent state Laser Attenuator Approximate single photon source Mean number of photon per pulse.
Quantum Entanglement David Badger Danah Albaum. Some thoughts on entanglement... “Spooky action at a distance.” -Albert Einstein “It is a problem that.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Quantum Cryptography December, 3 rd 2007 Philippe LABOUCHERE Annika BEHRENS.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
Coherence in Spontaneous Emission Creston Herold July 8, 2013 JQI Summer School (1 st annual!)
Single Photon Emitters and their use in Quantum Cryptography Presentation by: Bram Slachter Supervision: Dr. Ir. Caspar van der Wal.
GAP Optique Geneva University 1 Quantum Communications at telecom wavelengths Nicolas Gisin Hugo Zbinden Toni Acin, Claudio Bareiro, Sylvain Fasel, J.-D.
Physics is becoming too difficult for physicists. — David Hilbert (mathematician)
QUANTUM ENTANGLEMENT AND IMPLICATIONS IN INFORMATION PROCESSING: Quantum TELEPORTATION K. Mangala Sunder Department of Chemistry IIT Madras.
Institute of Technical Physics Entanglement – Beamen – Quantum cryptography The weird quantum world Bernd Hüttner CPhys FInstP DLR Stuttgart.
Project funded by the Future and Emerging Technologies arm of the IST Programme FET-QIPC -RAMBOQ IST RAMBOQ pRobabilistic gAtes Making Binary.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 5 (2/3/2014) Slide Introduction to Quantum Optics &
Security of practical quantum cryptography with heralded single photon sources Mikołaj Lasota 1, Rafał Demkowicz-Dobrzański 2, Konrad Banaszek 2 1 Nicolaus.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Lecture note 8: Quantum Algorithms
The Road to Quantum Computing: Boson Sampling Nate Kinsey ECE 695 Quantum Photonics Spring 2014.
Experimental generation and characterisation of private states Paweł Horodecki Wydział Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska.
GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With.
IIS 2004, CroatiaSeptember 22, 2004 Quantum Cryptography and Security of Information Systems 1 2
Quantum Cryptography Zelam Ngo, David McGrogan. Motivation Age of Information Information is valuable Protecting that Information.
Information Processing by Single Particle Hybrid Entangled States Archan S. Majumdar S. N. Bose National Centre for Basic Sciences Kolkata, India Collaborators:
Trondheim 2002 NTNU Quantum Cryptography FoU NTNU Vadim Makarov and Dag R. Hjelme Institutt for fysikalsk elektronikk NTNU Norsk kryptoseminar,
Centre for Quantum Physics & Technology, Clarendon Laboratory, University of Oxford. Karl Surmacz (University of Oxford, UK) Efficient Unitary Quantum.
Quantum Dense coding and Quantum Teleportation
CS555Topic 251 Cryptography CS 555 Topic 25: Quantum Crpytography.
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
Copyright © 2006 Keio University Applications of an Entangled Quantum Internet Conference on Future Internet Technologies Seoul, Korea June 20, 2008 Rodney.
The Classically Enhanced Father Protocol
Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum computing, teleportation, cryptography Computing Teleportation Cryptography.
Efficiency of Multi-Qubit W states in Information Processing Atul Kumar IPQI-2014 IIT Jodhpur
Quantum Entanglement and Distillation in Information Processing Shao-Ming Fei
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of.
Uni-Heidelberg Physikalisches Insitut Jian-Wei Pan Multi-Particle Entanglement & It’s Application in Quantum Networks Jian-Wei Pan Lecture Note.
Fawaz S. K. Aldafeery. Introduction Quantum memories are important elements for quantum information processing applications such as quantum networks,
Introduction to Quantum Computing
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Quantum Cryptography Christian Schaffner Research Center for Quantum Software Institute for Logic, Language and Computation (ILLC) University of Amsterdam.
1 Conference key-agreement and secret sharing through noisy GHZ states Kai Chen and Hoi-Kwong Lo Center for Quantum Information and Quantum Control, Dept.
Quantum teleportation between light and matter
Quantum Optics II – Cozumel December 2004 Quantum key distribution with polarized coherent states Quantum Optics Group Instituto de Física “Gleb Wataghin”
Quantum Cryptography Antonio Acín
Quantum Cryptography Christian Schaffner Research Center for Quantum Software Institute for Logic, Language and Computation (ILLC) University of Amsterdam.
Presented By, Mohammad Anees SSE, Mukka. Contents Cryptography Photon Polarization Quantum Key Distribution BB84 Protocol Security of Quantum Cryptography.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Spontaneous Parametric Down Conversion and The Biphoton
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Characterization and manipulation of frequency entangled qudits 1 Bänz Bessire Quantum Optics Lab – The Stefanov.
M. Stobińska1, F. Töppel2, P. Sekatski3,
ICNFP, Kolymbari, Crete, Greece August 28 – September 5, 2013
Optical qubits
Quantum Teleportation
האם מכניקת הקוונטים יכולה לתת תאור שלם למציאות הפיסיקלית?
Linear Optical Quantum Computing
INTERNATIONAL WORKSHOP ON QUANTUM INFORMATION
Entangling Atoms with Optical Frequency Combs
Presentation transcript:

Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches Institut der Universität Heidelberg December 15, 2005

or + + Classical Physics: “bit” Quantum Physics: “qubit” Entanglement: Quantum foundations: Bell’s inequality, quantum nonlocality… Quantum information processing: quantum communication, quantum computation, high precision measurement etc … Quantum Superposition

When information is encoded in quantum states one may outperform classical communication systems in terms of absolute security efficiency channel capacity Because quantum information systems allow encoding information by means of coherent superposition of quantum states. Why Quantum Communication?

Qubits: Polarization of Single Photons One bit of information per photon (encoded in polarization) Qubit: Non-cloning theorem: An unknown quantum state can not be copied precisely!

Bell states – maximally entangled states: Polarization Entangled Photon Pair 1-2 Singlet: where 45-degree polarization

Quantum Cryptographic Key Distribution Single-particle-based secret key distribution: Entanglement-based secret key distribution: [A. Ekert, Phys. Rev. Lett. 67, 661 (1991). ] [C. H. Bennett & G. Brassard, BB84 protocol (1984) ]

Quantum Teleportation Initial state The shared entangled pair where [C.H. Bennett et al., Phys. Rev. Lett. 73, 3801 (1993)]

Entanglement Swapping [M. Zukowski et al., Phys. Rev. Lett. 71, 4287 (1993)]

achieved distance: 100km fiber-based (Toshiba Research Europe) 23km free-space (TU Munich) Key Distribution with Single Photons [C. Kurtsiefer et al., Nature 419, 450 (2002)]

Generation of Photonic Entanglement [P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995).]

Key Distribution with Entangled Photons achieved distance: 1km for both fibre-based and free-space Fibre: [T. Jennewein et al., Phys. Rev. Lett. 84, 4729 (2000).] [D. S. Naik, et al., Phys. Rev. Lett. 84, 4733 (2000).] [W. Tittel et al., Phys. Rev. Lett. 84, 4737 (2000).] Free-space : [ M. Aspelmeyer et al., Science 301, 621 (2003). ]

Experimental Quantum Teleportation Teleportation: [D. Bouwmeester & J.-W. Pan et al., Nature 390, 575 (1997)] The setup Entanglement Swapping: [J.-W. Pan et al., Phys. Rev. Lett. 80, 3891 (1998)] The result

Our dream: achieving long-distance quantum communication!

However, due to the noisy quantum channel photon loss (1) absorption (2) decoherence degrading entanglement quality Difficulties in Long-Distance Quantum Communication Free-Space Distribution of Entangled Photons

Free-Space Distribution of Entangled Photons over 13km [C.-Z. Peng et al., Phys. Rev. Lett. 94, (2005)] Free-space entanglement distribution - we are working on 20km and 500km scale…

Entanglement swapping: solution to photon loss: [N. Gisin et al., Rev. Mod. Phys. 74, 145 (2002)] Entanglement purification: solution to decoherence [C. H. Bennett et al., Phys. Rev. Lett. 76, 722 (1996)] [D. Deutsch et al., Phys. Rev. Lett. 77, 2818 (1996)] Another Solution to Photon Loss and Decoherence

Generating Entangled States over Long-Distance Quantum repeaters: [H. Briegel et al., Phys. Rev. Lett. 81, 5932(1998)] Require entanglement swapping with high precision entanglement purification with high precision quantum memory

Experimental Entanglement Purification and Swapping Before purification, F=3/4 After purification, F=13/14 [J.-W. Pan et al., Nature 423, 417 (2003)] [J.-W. Pan et al., Nature 410, 1067 (2001)] [J.-W. Pan et al., Nature 421, 721 (2003)]

Drawback in Former Experiments Probabilistic entangled photon source Probabilistic entanglement purification Bad weather Quantum memory In N -stage realization, the cost of resource is proportional to With the help of quantum memory, the total cost is then

Storage of single-photon states in atomic ensembles [C. Liu et al., Nature 409, 490 (2001)] [D. F. Phillips et al., Phys. Rev. Lett. 86, 783 (2001)] Storage of light in atomic ensembles motivate [L.-M. Duan et al., Nature 414, 413 (2001)] Solution with Atomic Ensembles

Entanglement Generation Maximally entangled in the number basis!

Entanglement Connection Steps : 1.Apply a reverse read laser pulse to transfer atomic excitation to optical exc. 2.Succeeds if D1 or D2 registers one photon 3.Fails otherwise, and repeat every step from entanglement generation

The most recent experiment results Observation of Stokes and anti-Stokes photon Harvard: M. D. Lukin… [C. H. Van der Wal et al., Science 301, 196 (2003)] Caltech: H. J. Kimble… [A. Kuzmich et al., Nature 423, 731 (2003)] Gatech: A. Kuzmich… [ D. N. Matsukevich et al., Science 306, 663 (2004 )] Heidelberg: J.-W. Pan … long-life time quantum memory [S. Chen et al., in preparation for Phys. Rev. Lett.] working on a phase insensitive scheme… Synchronization of two independent lasers USTC: J.-W. Pan, J. Zhang and Z.-Y. Wei … [T. Yang et al., submitted to Phys. Rev. Lett. (2005) ]

|Photons> |Atoms> + Powerful Quantum Superposition Promising Long-Distance Quantum Communication