VISUALIZATION OF HYPERSPECTRAL IMAGES ROBERTO BONCE & MINDY SCHOCKLING iMagine REU Montclair State University.

Slides:



Advertisements
Similar presentations
CV in a Nutshell (||) Yi Li inNutshell.htm.
Advertisements

Fire Detection & Assessment Practical work E. Chuvieco (Univ. of Alcalá, Spain)
University of Ioannina - Department of Computer Science Wavelets and Multiresolution Processing (Background) Christophoros Nikou Digital.
Hyperspectral Imaging Camera From HORIBA Scientific.
Image classification in natural scenes: Are a few selective spectral channels sufficient?
Fourier Transform – Chapter 13. Image space Cameras (regardless of wave lengths) create images in the spatial domain Pixels represent features (intensity,
2004 COMP.DSP CONFERENCE Survey of Noise Reduction Techniques Maurice Givens.
VISUALIZATION OF HYPERSPECTRAL IMAGES ROBERTO BONCE & MINDY SCHOCKLING iMagine REU Montclair State University.
Biometrics & Security Tutorial 7. 1 (a) Please compare two different kinds of biometrics technologies: Retina and Iris. (P8:2-3)
School of Computing Science Simon Fraser University
0 - 1 © 2007 Texas Instruments Inc, Content developed in partnership with Tel-Aviv University From MATLAB ® and Simulink ® to Real Time with TI DSPs Wavelet.
The Fourier Transform Jean Baptiste Joseph Fourier.
Speech Enhancement Based on a Combination of Spectral Subtraction and MMSE Log-STSA Estimator in Wavelet Domain LATSI laboratory, Department of Electronic,
Texture Reading: Chapter 9 (skip 9.4) Key issue: How do we represent texture? Topics: –Texture segmentation –Texture-based matching –Texture synthesis.
Multi-Resolution Analysis (MRA)
Introduction to Wavelets
Signal Processing of Germanium Detector Signals David Scraggs University of Liverpool UNTF 2006.
Motion Estimation Using Low- Band-Shift Method for Wavelet- Based Moving Picture Hyun-Wook Park, Senior Member, IEEE, and Hyung-Sun Kim IEEE Transactions.
Introduction to Wavelets -part 2
The Fourier Transform Jean Baptiste Joseph Fourier.
Face Detection and Neural Networks Todd Wittman Math 8600: Image Analysis Prof. Jackie Shen December 2001.
Inputs to Signal Generation.vi: -Initial Distance (m) -Velocity (m/s) -Chirp Duration (s) -Sampling Info (Sampling Frequency, Window Size) -Original Signal.
Image Compression - JPEG. Video Compression MPEG –Audio compression Lossy / perceptually lossless / lossless 3 layers Models based on speech generation.
ENG4BF3 Medical Image Processing
Fundamentals Rawesak Tanawongsuwan
Hyperspectral Imaging Alex Chen 1, Meiching Fong 1, Zhong Hu 1, Andrea Bertozzi 1, Jean-Michel Morel 2 1 Department of Mathematics, UCLA 2 ENS Cachan,
Image Synthesis Rabie A. Ramadan, PhD 3. 2 Our Problem.
The Wavelet Tutorial: Part3 The Discrete Wavelet Transform
Details, details… Intro to Discrete Wavelet Transform The Story of Wavelets Theory and Engineering Applications.
01/28/05© 2005 University of Wisconsin Last Time Improving Monte Carlo Efficiency.
Iterated Denoising for Image Recovery Onur G. Guleryuz To see the animations and movies please use full-screen mode. Clicking on.
Fuzzy Entropy based feature selection for classification of hyperspectral data Mahesh Pal Department of Civil Engineering National Institute of Technology.
WAVELET (Article Presentation) by : Tilottama Goswami Sources:
Autocorrelation correlations between samples within a single time series.
Filtering Robert Lin April 29, Outline Why filter? Filtering for Graphics Sampling and Reconstruction Convolution The Fourier Transform Overview.
DIGITAL IMAGE PROCESSING
Rajeev Aggarwal, Jai Karan Singh, Vijay Kumar Gupta, Sanjay Rathore, Mukesh Tiwari, Dr.Anubhuti Khare International Journal of Computer Applications (0975.
1 Multiple Classifier Based on Fuzzy C-Means for a Flower Image Retrieval Keita Fukuda, Tetsuya Takiguchi, Yasuo Ariki Graduate School of Engineering,
What is an image? What is an image and which image bands are “best” for visual interpretation?
DCT.
Wavelets and Multiresolution Processing (Wavelet Transforms)
2005/12/021 Fast Image Retrieval Using Low Frequency DCT Coefficients Dept. of Computer Engineering Tatung University Presenter: Yo-Ping Huang ( 黃有評 )
Introduction to Computer Graphics
Hyperspectral remote sensing
IPCV ‘06 August 21 – September 1 Budapest Jussi Parkkinen Markku Hauta-Kasari Department of Computer Science University of Joensuu, Finland
Bivariate Splines for Image Denoising*° *Grant Fiddyment University of Georgia, 2008 °Ming-Jun Lai Dept. of Mathematics University of Georgia.
CS 376b Introduction to Computer Vision 03 / 17 / 2008 Instructor: Michael Eckmann.
ESPL 1 Motivation Problem: Amateur photographers often take low- quality pictures with digital still camera Personal use Professionals who need to document.
By Dr. Rajeev Srivastava CSE, IIT(BHU)
The Frequency Domain Digital Image Processing – Chapter 8.
UNIT-IV. Introduction Speech signal is generated from a system. Generation is via excitation of system. Speech travels through various media. Nature of.
Amity School of Engineering & Technology 1 Amity School of Engineering & Technology DIGITAL IMAGE PROCESSING & PATTERN RECOGNITION Credit Units: 4 Mukesh.
An Experimental Receiver Design For Diffuse IR Channels Based on Wavelet Analysis & Artificial Intelligence R J Dickenson and Z Ghassemlooy O ptical C.
0 Assignment 1 (Due: 10/2) Input/Output an image: (i) Design a program to input and output a color image. (ii) Transform the output color image C(R,G,B)
The Fourier Transform Jean Baptiste Joseph Fourier.
Multiresolution Analysis (Chapter 7)
Real-time environment map lighting
The Fourier Transform Jean Baptiste Joseph Fourier.
The Story of Wavelets Theory and Engineering Applications
Section 1: Tools of Astronomy
(C) 2002 University of Wisconsin, CS 559
Image Acquisition.
MA 527 Dr. Park.
The Story of Wavelets Theory and Engineering Applications
The Fourier Transform Jean Baptiste Joseph Fourier.
The Fourier Transform Jean Baptiste Joseph Fourier.
Chapter 15: Wavelets (i) Fourier spectrum provides all the frequencies
Chapter 6 Exploring Space.
Presentation transcript:

VISUALIZATION OF HYPERSPECTRAL IMAGES ROBERTO BONCE & MINDY SCHOCKLING iMagine REU Montclair State University

Presentation Overview  Hyperspectral Images  Wavelet Transform  Denoising  MATLAB code and results  Future Work  References

What are hyperspectral images?  Most images contain only data in the color spectrum  Hyperspectral images contain data from several, continuous wavelengths  Our camera records data from 400nm to 900nm

Hyperspectral cont.  Hyperspectral images can be thought of as being stacked on top of each other, creating an image cube  This creates a pixel vector, the vector can be used to distinguish one material from another

Pictures

Wavelets: “small waves”  Decay as distance from the center increases  Have some sense of periodicity  Can perform local analysis unlike Fourier

Wavelet Analysis and Reconstruction  Original signal is sent through high and low pass filters  Approximation: low frequency, general shape  Detail: high frequency, noise  Reconstruction involves filtering and upsampling

Noisy Sine

The Project  Analyzing hyperspectral signatures for image analysis can be very computationally expensive  An alternative approach is to select a subset of the images and apply a weighting scheme to generate a useful image

Project Cont.  The plant to the right contains both real and artificial leaves  Goal: distinguish between real and artificial leaves

Last Year (2007)  Focus bands were chosen  Applied a weighting scheme To give infrared data more importance because the visual data is too similar  An RGB composite image is created

Last Year  Composite image to the right  They used the distance series

Preliminary results  Tried weighting, wavelet transform, different focus bands.  Results were somewhat disappointing

Procedure  Artificial leaves have a second peak in near- infrared region  By centering a focus band in this region, real and artificial leaves can be visualized

Results Original Image (R:60, G:30, B:20) Band-Shifted Image (R:90, G:30, B:20)

Future Work  Further explore the use of wavelets for denoising data  Continue to investigate various weighting schemes  Attempt to classify or distinguish between other materials besides leaves

References:  art/pdf/hyprspec.pdf art/pdf/hyprspec.pdf  Images from  MATLAB help