Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Takuya Kitagawa, Susanne Pielawa,

Slides:



Advertisements
Similar presentations
Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA,
Advertisements

Interference of one dimensional condensates Experiments: Schmiedmayer et al., Nature Physics (2005,2006) Transverse imaging long. imaging trans. imaging.
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
Eugene Demler Harvard University
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Condensed Matter models for many-body systems of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov,
Interference experiments with ultracold atoms Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev,
Breakdown of the adiabatic approximation in low-dimensional gapless systems Anatoli Polkovnikov, Boston University Vladimir Gritsev Harvard University.
Nonequilibrium spin dynamics in systems of ultracold atoms Funded by NSF, DARPA, MURI, AFOSR, Harvard-MIT CUA Collaborators: Ehud Altman, Robert Cherng,
Strongly correlated many-body systems: from electronic materials to ultracold atoms to photons Eugene Demler Harvard University Thanks to: E. Altman, I.
Fluctuations in Strongly Interacting Fermi Gases Christian Sanner, Jonathon Gillen, Wujie Huang, Aviv Keshet, Edward Su, Wolfgang Ketterle Center for Ultracold.
Phase Diagram of One-Dimensional Bosons in Disordered Potential Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman-Weizmann Yariv Kafri.
Multicomponent systems of ultracold atoms Eugene Demler Harvard University Dynamical instability of spiral states In collaboration with Robert Cherng,
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard.
Quantum noise studies of ultracold atoms Eugene Demler Harvard University Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA, MURI Collaborators: Ehud Altman,
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Interference between fluctuating condensates Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman-Weizmann Eugene Demler - Harvard Vladimir.
Eugene Demler Harvard University Collaborators:
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Measuring correlation functions in interacting systems of cold atoms
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Quantum simulator theory
Eugene Demler Harvard University Robert Cherng, Adilet Imambekov,
Nonequilibrium dynamics of ultracold atoms in optical lattices
Probing interacting systems of cold atoms using interference experiments Harvard-MIT CUA Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov.
Cold Atoms and Out of Equilibrium Quantum Dynamics Anatoli Polkovnikov, Boston University AFOSR Vladimir Gritsev – Harvard Ehud Altman -Weizmann Eugene.
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir.
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Non-equilibrium dynamics of cold atoms in optical lattices Vladimir Gritsev Harvard Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann.
Scaling and full counting statistics of interference between independent fluctuating condensates Anatoli Polkovnikov, Boston University Collaboration:
Quantum coherence and interactions in many body systems Collaborators: Ehud Altman, Anton Burkov, Derrick Chang, Adilet Imambekov, Vladimir Gritsev, Mikhail.
Nonequilibrium dynamics of ultracold atoms in optical lattices. Lattice modulation experiments and more Ehud Altman Weizmann Institute Peter Barmettler.
Nonequilibrium dynamics of bosons in optical lattices $$ NSF, AFOSR MURI, DARPA, RFBR Harvard-MIT Eugene Demler Harvard University.
Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov Harvard Robert Cherng Harvard Anatoli Polkovnikov Harvard/Boston University Ehud Altman.
Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Takuya Kitagawa, Susanne Pielawa,
Nonequilibrium dynamics of interacting systems of cold atoms Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev,
Magnetism of spinor BEC in an optical lattice
Nonequilibrium dynamics of ultracold atoms in optical lattices David Pekker, Rajdeep Sensarma, Takuya Kitagawa, Susanne Pielawa, Vladmir Gritsev, Mikhail.
Probing phases and phase transitions in cold atoms using interference experiments. Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman- The.
The Center for Ultracold Atoms at MIT and Harvard Quantum noise as probe of many-body systems Advisory Committee Visit, May 13-14, 2010.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Slow dynamics in gapless low-dimensional systems Anatoli Polkovnikov, Boston University AFOSR Vladimir Gritsev – Harvard Ehud Altman -Weizmann Eugene Demler.
Outline of these lectures Introduction. Systems of ultracold atoms. Cold atoms in optical lattices. Bose Hubbard model. Equilibrium and dynamics Bose mixtures.
T. Kitagawa (Harvard), S. Pielawa (Harvard), D. Pekker (Harvard), R. Sensarma (Harvard/JQI), V. Gritsev (Fribourg), M. Lukin (Harvard), Lode Pollet (Harvard)
Quantum simulation of low-dimensional systems using interference experiments. Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman- The Weizmann.
Static and dynamic probes of strongly interacting low-dimensional atomic systems. Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman- The.
Dynamics of repulsively bound pairs in fermionic Hubbard model David Pekker, Harvard University Rajdeep Sensarma, Harvard University Ehud Altman, Weizmann.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Eugene Demler Harvard University
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir.
QUANTUM MANY-BODY SYSTEMS OF ULTRACOLD ATOMS Eugene Demler Harvard University Grad students: A. Imambekov (->Rice), Takuya Kitagawa Postdocs: E. Altman.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Introduction. Systems of ultracold atoms. Bogoliubov theory. Spinor condensates. Cold atoms in optical lattices. Band structure and semiclasical dynamics.
Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya.
Interazioni e transizione superfluido-Mott. Bose-Hubbard model for interacting bosons in a lattice: Interacting bosons in a lattice SUPERFLUID Long-range.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Probing interacting systems of cold atoms using interference experiments Vladimir Gritsev, Adilet Imambekov, Anton Burkov, Robert Cherng, Anatoli Polkovnikov,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Anderson localization of weakly interacting bosons
Atomic BEC in microtraps: Localisation and guiding
Analysis of quantum noise
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Part II New challenges in quantum many-body theory:
Measuring correlation functions in interacting systems of cold atoms
Dynamics of spinor condensates: dipolar interactions and more
Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov.
Introduction. Systems of ultracold atoms.
Presentation transcript:

Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Takuya Kitagawa, Susanne Pielawa, Adilet Imambekov, Ehud Altman, Vladimir Gritsev, Anatoli Polkovnikov, Mikhail Lukin Experiments: Bloch et al., Dalibard et al., Schmiedmayer et al.

Quantum noise Classical measurement: collapse of the wavefunction into eigenstates of x Histogram of measurements of x

Probabilistic nature of quantum mechanics “Spooky action at a distance” Bohr-Einstein debate: EPR thought experiment (1935) Aspect’s experiments with correlated photon pairs: tests of Bell’s inequalities (1982) Analysis of correlation functions can be used to rule out hidden variables theories S

Second order coherence: HBT experiments Classical theory Hanburry Brown and Twiss (1954) Used to measure the angular diameter of Sirius Quantum theory Glauber (1963) For bosons For fermions HBT experiments with matter

Shot noise in electron transport Shot noise Schottky (1918) Variance of transmitted charge e-e- e-e- Measurements of fractional charge Current noise for tunneling across a Hall bar on the 1/3 plateau of FQE Etien et al. PRL 79:2526 (1997) see also Heiblum et al. Nature (1997)

Analysis of quantum noise: powerful experimental tool Can we use it for cold atoms?

Quantum noise as a probe of equilibrium correlation functions in low dimensional systems. Interference experiments with independent condensates Outline Goal: new methods of analyzing quantum many-body states of ultracold atoms Quantum noise as a probe of dynamics. Interaction induced collapse of Ramsey fringes

Interference experiments with cold atoms Analysis of thermal and quantum noise in low dimensional systems

Interference of independent condensates Experiments: Andrews et al., Science 275:637 (1997) Theory: Javanainen, Yoo, PRL 76:161 (1996) Cirac, Zoller, et al. PRA 54:R3714 (1996) Castin, Dalibard, PRA 55:4330 (1997) and many more

x z Time of flight Experiments with 2D Bose gas Hadzibabic et al., Nature 441:1118 (2006) Experiments with 1D Bose gas Hofferberth et al., Nature Physics 4:489 (2008)

Interference of two independent condensates 1 2 r r+d d r’ Phase difference between clouds 1 and 2 is not well defined Assuming ballistic expansion Individual measurements show interference patterns They disappear after averaging over many shots

x1x1 d Amplitude of interference fringes, Interference of fluctuating condensates For identical condensates Instantaneous correlation function For independent condensates A fr is finite but Df is random x2x2 Polkovnikov, Altman, Demler, PNAS 103:6125(2006)

Fluctuations in 1d BEC Thermal fluctuations Thermally energy of the superflow velocity Quantum fluctuations Weakly interacting atoms

For impenetrable bosons and Interference between Luttinger liquids Luttinger liquid at T=0 K – Luttinger parameter Finite temperature Experiments: Hofferberth, Schumm, Schmiedmayer For non-interacting bosons and

Distribution function of fringe amplitudes for interference of fluctuating condensates L is a quantum operator. The measured value of will fluctuate from shot to shot. Higher moments reflect higher order correlation functions Gritsev, Altman, Demler, Polkovnikov, Nature Physics 2006 Imambekov, Gritsev, Demler, Varenna lecture notes, c-m/ We need the full distribution function of

Distribution function of interference fringe contrast Hofferberth et al., Nature Physics 4:489 (2008) Comparison of theory and experiments: no free parameters Higher order correlation functions can be obtained Quantum fluctuations dominate : asymetric Gumbel distribution (low temp. T or short length L) Thermal fluctuations dominate: broad Poissonian distribution (high temp. T or long length L) Intermediate regime : double peak structure

Quantum impurity problem: interacting one dimensional electrons scattered on an impurity Conformal field theories with negative central charges: 2D quantum gravity, non-intersecting loop model, growth of random fractal stochastic interface, high energy limit of multicolor QCD, … Interference between interacting 1d Bose liquids. Distribution function of the interference amplitude Distribution function of Yang-Lee singularity 2D quantum gravity, non-intersecting loops

Fringe visibility and statistics of random surfaces Mapping between fringe visibility and the problem of surface roughness for fluctuating random surfaces. Relation to 1/f Noise and Extreme Value Statistics Fringe visibility Roughness Analysis of sine-Gordon models of the type

x z Time of flight low temperaturehigher temperature Typical interference patterns Experiments with 2D Bose gas Hadzibabic, Dalibard et al., Nature 441:1118 (2006)

integration over x axis DxDx z z integration over x axis z x integration distance D x (pixels) Contrast after integration middle T low T high T integration over x axis z Experiments with 2D Bose gas Hadzibabic et al., Nature 441:1118 (2006)

fit by: integration distance D x Integrated contrast low T middle T high T if g 1 (r) decays exponentially with : if g 1 (r) decays algebraically or exponentially with a large : Exponent  central contrast high Tlow T “Sudden” jump: BKT transition Experiments with 2D Bose gas Hadzibabic et al., Nature 441:1118 (2006)

Experiments with 2D Bose gas. Proliferation of thermal vortices Hadzibabic et al., Nature 441:1118 (2006) The onset of proliferation coincides with  shifting to 0.5! Fraction of images showing at least one dislocation 0 10% 20% 30% central contrast high T low T

Fringe contrast in two dimensions. Evolution of distribution function Experiments: Kruger, Hadzibabic, Dalibard

Quantum noise as a probe of non-equilibrium dynamics Ramsey interferometry and many-body decoherence

Working with N atoms improves the precision by. Ramsey interference t 0 1 Atomic clocks and Ramsey interference:

Two component BEC. Single mode approximation Interaction induced collapse of Ramsey fringes time Ramsey fringe visibility Experiments in 1d tubes: A. Widera et al. PRL 100: (2008)

Spin echo. Time reversal experiments Single mode approximation Predicts perfect spin echo The Hamiltonian can be reversed by changing a 12

Spin echo. Time reversal experiments No revival? Expts: A. Widera, I. Bloch et al. Experiments done in array of tubes. Strong fluctuations in 1d systems. Single mode approximation does not apply. Need to analyze the full model

Interaction induced collapse of Ramsey fringes. Multimode analysis Luttinger model Changing the sign of the interaction reverses the interaction part of the Hamiltonian but not the kinetic energy Time dependent harmonic oscillators can be analyzed exactly Low energy effective theory: Luttinger liquid approach

Time-dependent harmonic oscillator Explicit quantum mechanical wavefunction can be found From the solution of classical problem We solve this problem for each momentum component See e.g. Lewis, Riesengeld (1969) Malkin, Man’ko (1970)

Interaction induced collapse of Ramsey fringes in one dimensional systems Fundamental limit on Ramsey interferometry Only q=0 mode shows complete spin echo Finite q modes continue decay The net visibility is a result of competition between q=0 and other modes Decoherence due to many-body dynamics of low dimensional systems How to distinquish decoherence due to many-body dynamics?

Single mode analysis Kitagawa, Ueda, PRA 47:5138 (1993) Multimode analysis evolution of spin distribution functions T. Kitagawa, S. Pielawa, A. Imambekov, et al. Interaction induced collapse of Ramsey fringes

Summary Experiments with ultracold atoms provide a new perspective on the physics of strongly correlated many-body systems. Quantum noise is a powerful tool for analyzing many body states of ultracold atoms Thanks to: Harvard-MIT