1 IFSWF Subcommittee #2 Case Study #3: Constructing Portfolios for Specific Macroeconomic Environments.

Slides:



Advertisements
Similar presentations
Chapter 5 Portfolio Risk and Return: Part I
Advertisements

Risk and Return in Capital Markets
Introduction The relationship between risk and return is fundamental to finance theory You can invest very safely in a bank or in Treasury bills. Why.
1. Goal: Earn a portfolio return net of transaction costs and expenses that exceeds the return of a passive benchmark portfolio (most often an index)
The Capital Asset Pricing Model (Chapter 8)
An Introduction to Asset Pricing Models
Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Seventh Edition by Frank K. Reilly & Keith C. Brown Chapter.
Risk, Return, and Discount Rates Capital Market History The Risk/Return Relation Applications to Corporate Finance.
Investment. An Investor’s Perspective An investor has two choices in investment. Risk free asset and risky asset For simplicity, the return on risk free.
Efficient Diversification
Portfolio Construction 01/26/09. 2 Portfolio Construction Where does portfolio construction fit in the portfolio management process? What are the foundations.
AN INTRODUCTION TO PORTFOLIO MANAGEMENT
Chapter 6 An Introduction to Portfolio Management.
More on Asset Allocation
A Brief History of Risk and Return
Asset Management Lecture 11.
Risk, Return, and Discount Rates Capital Market History The Risk/Return Relation Applications to Corporate Finance.
1 Chapter 09 Characterizing Risk and Return McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Capital Asset Pricing and Arbitrage Pricing Theory CHAPTER 7.
Estimation Error and Portfolio Optimization Global Asset Allocation and Stock Selection Campbell R. Harvey Duke University, Durham, NC USA National Bureau.
AN INTRODUCTION TO PORTFOLIO MANAGEMENT
FIN638 Vicentiu Covrig 1 Portfolio management. FIN638 Vicentiu Covrig 2 How Finance is organized Corporate finance Investments International Finance Financial.
Asset Allocation and the Efficient Frontier: Optimizing a portfolio’s risk/return profile J.P. Morgan Investment Academy SM FOR INSTITUTIONAL USE ONLY.
Diversification and Portfolio Analysis Investments and Portfolio Management MB 72.
Expected Utility, Mean-Variance and Risk Aversion Lecture VII.
Chapter McGraw-Hill/IrwinCopyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. A Brief History of Risk and Return 1.
Version 1.2 Copyright © 2000 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to:
Portfolio Management-Learning Objective
Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Seventh Edition by Frank K. Reilly & Keith C. Brown Chapter 7.
Chapter McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. 11 Diversification and Risky Asset Allocation.
Some Background Assumptions Markowitz Portfolio Theory
Investment Analysis and Portfolio Management Chapter 7.
A History of Risk and Return
Chapter Diversification and Risky Asset Allocation McGraw-Hill/IrwinCopyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. 11.
0 Portfolio Managment Albert Lee Chun Construction of Portfolios: Introduction to Modern Portfolio Theory Lecture 3 16 Sept 2008.
Chapter 3 Delineating Efficient Portfolios Jordan Eimer Danielle Ko Raegen Richard Jon Greenwald.
And, now take you into a WORLD of……………...
Chapter McGraw-Hill/IrwinCopyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. A Brief History of Risk and Return 1.
Online Financial Intermediation. Types of Intermediaries Brokers –Match buyers and sellers Retailers –Buy products from sellers and resell to buyers Transformers.
Chapter 2 Risk Measurement and Metrics. Measuring the Outcomes of Uncertainty and Risk Risk is a consequence of uncertainty. Although they are connected,
Investment Analysis and Portfolio Management First Canadian Edition By Reilly, Brown, Hedges, Chang 6.
Chapter McGraw-Hill/IrwinCopyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. A Brief History of Risk and Return 1.
“Differential Information and Performance Measurement Using a Security Market Line” by Philip H. Dybvig and Stephen A. Ross Presented by Jane Zhao.
Intensive Actuarial Training for Bulgaria January 2007 Lecture 16 – Portfolio Optimization and Risk Management By Michael Sze, PhD, FSA, CFA.
Risk and Return: Portfolio Theory and Assets Pricing Models
PORTFOLIO OPTIMISATION. AGENDA Introduction Theoretical contribution Perceived role of Real estate in the Mixed-asset Portfolio Methodology Results Sensitivity.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 8 Investor Choice: Risk and Reward.
McGraw-Hill/Irwin Copyright © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Efficient Diversification CHAPTER 6.
Unit – III Session No. 26 Topic: Optimization
Last Study Topics 75 Years of Capital Market History Measuring Risk
1 MBF 2263 Portfolio Management & Security Analysis Lecture 4 Efficient Frontier & Asset Allocation.
1 Lecture 11: U ncertainty Supplementary stuff about uncertainty.
Chapter 7 An Introduction to Portfolio Management.
Lecture 16 Portfolio Weights. determine market capitalization value-weighting equal-weighting mean-variance optimization capital asset pricing model market.
Types of risk Market risk
Capital Market Theory: An Overview
Markowitz Risk - Return Optimization
Investment Analysis and Portfolio management
Risk and Return.
Risk Mgt and the use of derivatives
The Markowitz’s Mean-Variance model
TOPIC 3.1 CAPITAL MARKET THEORY
Saif Ullah Lecture Presentation Software to accompany Investment Analysis and.
Financial Market Theory
Types of risk Market risk
Estimation Error and Portfolio Optimization
Estimation Error and Portfolio Optimization
Financial Market Theory
Estimation Error and Portfolio Optimization
Estimation Error and Portfolio Optimization
Presentation transcript:

1 IFSWF Subcommittee #2 Case Study #3: Constructing Portfolios for Specific Macroeconomic Environments

2 Case study objectives  To construct investment portfolios that are resilient to specific macroeconomic environments -- such as market turbulence or high inflation -- without giving up too much return on balance over the long term.  To identify solutions that could be useful to the broadest possible set of SWFs, while recognizing that each SWF has unique challenges, constraints, and objectives and that as such, no single approach will be appropriate for all SWFs.

3 Questions for discussion  Is it important for SWFs to manage interim losses during turbulent periods? If so, what is the appropriate tradeoff between this resilience and long-term performance?  Turbulence is just one type of market environment. For what other types of environments should SWFs prepare – and what are the best methods for doing so?  How tactical should SWFs be in managing their asset allocations? What are the risks and benefits?  Quantitative tools should always be used as a complement to sound judgment and never as a substitute for it. What are the important qualitative aspects of portfolio construction?

4 Outline 1.Is portfolio optimization dead? - We present a brief review of mean-variance optimization, evaluate common critiques of the technique, and introduce a useful alternative approach. 2.Risk, regimes, and performance - We define market turbulence, show how to partition historical returns into turbulent and quiet periods, and examine the link between turbulence and performance. 3.Case study: from theory to practice - We introduce a framework that an SWF could employ to construct a portfolio that is more resilient to turbulent markets without giving up too much return on balance over the long term.

5 Is portfolio optimization dead?

6 Mean-variance optimization: a brief review  Mean-variance optimization was originally proposed by Harry Markowitz in 1952, but it was not until the mid 1970s that institutional investors seriously embraced the technology.*  For a given set of asset class inputs (expected return, risk, and correlation), MVO identifies the allocation that offers the highest expected return for a given level of risk – or the lowest risk for a given level of expected return.  A continuum of optimal portfolios forms the efficient frontier, which extends from the minimum-risk portfolio (lower left) to a portfolio that is 100% invested in the asset with the highest expected return (upper right).  Most institutional investors conduct asset allocation studies every three to five years to reevaluate the efficiency of their portfolios. Most employ some form of mean- variance optimization as part of this review. *Source: Kritzman, Mark. “The Graceful Aging of Mean-Variance Optimization.” The Journal of Portfolio Management, Winter 2011.

7 The efficient frontier with stocks and bonds *This illustration assumes that for stocks and bonds, respectively, expected returns are 9% and 6%, standard deviations are 20% and 5%, and correlation is zero. Minimum-risk portfolio 5% stocks, 95% bonds

8 Evaluating common critiques of MVO* Critique: Garbage in, garbage out - if the inputs to MVO are incorrect then the “optimal” weights will also be incorrect. Response: This is true. But why should we hold MVO to a higher standard than calculators, spreadsheets and cooking recipes? Critique: MVO is an “error maximizer” – the weights in the optimal portfolio are hypersensitive to small errors in the inputs. Response: This is only true when assets are close substitutes for one another (i.e., when they are highly correlated). When assets are close substitutes, the return and risk properties of the correct and incorrect portfolios will be quite similar despite these misallocations. *Source: Kritzman, Mark. “The Graceful Aging of Mean-Variance Optimization.” The Journal of Portfolio Management, Winter 2011.

9 Evaluating common critiques of MVO* Critique: MVO depends on false assumptions – it assumes that asset class returns conform to a normal (bell curve) distribution. In reality, many asset classes exhibit fat tails. It also assumes that investors have quadratic utility; in other words, it assumes that investors experience a smooth mapping between wealth and satisfaction. In reality, many investors have “kinked” utility. They become very unhappy very quickly when losses exceed a certain threshold. Response: This is perhaps the most valid critique of MVO, since in many cases, neither of these assumptions is true. Nonetheless, they are only rarely sufficiently false to invalidate MVO. Furthermore, when they are invalid, investors can rely on robust, alternative portfolio constructive tools that do not make these assumptions. *Source: Kritzman, Mark. “The Graceful Aging of Mean-Variance Optimization.” The Journal of Portfolio Management, Winter 2011.

10 Introducing Full Scale Optimization  Full Scale Optimization (FSO) enables investors to specify their own utility function (for example, a kinked utility function like the one shown here).  FSO also accounts for any fat tails (or skewness) in the data because it maximizes utility by performing a direct search of the data that takes every return observation into account. Life becomes unpleasant when losses exceed 10%

11 Risk, regimes, and performance

12 Measuring turbulence Stocks Bonds Two uncorrelated assets with equal variance Two correlated assets with different variances Three correlated assets with different variances Stocks Bonds

13 Turbulence through history Here, we measure turbulence across four global asset classes from a US dollar base.

14 Model portfolio allocation

15 Returns to risk are lower during turbulent periods

16 Case study: from theory to practice

17 Methodology* 1.Procure daily returns for each of the four asset classes in our model portfolio from January 2001 through December Partition this data into the 20% most turbulent days and the 80% quieter days. 3.Create ten years of “synthetic” return observations by sampling (with replacement) from the turbulent and quiet samples with equal likelihood. 4.Perform a Full Scale Optimization on this synthetic sample with a kink in the utility function at an annual loss of 15%. We impose a constraint such that weights cannot differ by more than 10% from the model portfolio. 5.Compare the performance of the model portfolio and the FSO portfolio over the period from January 2006 through October Determine how much return we are required to forfeit over the long term to increase our resilience during turbulent periods. *Source: Kritzman, M. and Y. Li “Skulls, Financial Turbulence, and Risk Management.” The Financial Analysts Journal, May/June 2010.

18 FSO portfolio return - model portfolio return (annualized)

19 FSO portfolio allocation

20 Summary  We review mean-variance optimization and an evaluate its most common criticisms. MVO is more robust than conventional wisdom would have us believe.  We introduce Full Scale Optimization, which can be employed when investors are concerned about particular loss thresholds and/or when returns are fat tailed.  Using a simple model portfolio as an illustration, we show how investment returns can differ significantly during turbulent periods relative to the full sample average. Long term averages can lull investors into a false sense of security!  We employ FSO to construct a portfolio that is expected to be more resilient to market turbulence. We use data from 2001 through 2005 to construct this portfolio.  We measure the full sample performance (cost) and turbulent sample performance (gain) of the FSO portfolio over the period from 2006 through  By reallocating 20% of the portfolio, we find that we can enhance performance by 10% per year during turbulent periods at a long term cost of 1% per year.