L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,

Slides:



Advertisements
Similar presentations
Int. Conf. II-VI 2007 Coherent Raman spectroscopy of Cd 1-x Mn x Te quantum wells Lowenna Smith, Daniel Wolverson, Stephen Bingham and J. John Davies Department.
Advertisements

Topological Insulators
Coherently induced ferromagnetism in Diluted Magnetic Semiconductors Southampton, OCES9-SCES2 September 7 st 2005 Joaquín Fernández-Rossier Dept. Física.
1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Fast Nuclear Spin Hyperpolarization of Phosphorus in Silicon E. Sorte, W. Baker, D.R. McCamey, G. Laicher, C. Boehme, B. Saam Department of Physics, University.
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Coulomb Interaction in quantum structures - Effects of
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
TRIONS in QWs Trions at low electron density limit 1. Charged exciton-electron complexes (trions) 2. Singlet and triplet trion states 3. Modulation doped.
Technion – Israel Institute of Technology, Physics Department and Solid State Institute Entangled Photon Pairs from Semiconductor Quantum Dots Nikolay.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
Spin transport in spin-orbit coupled bands
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Optically Driven Quantum Dot Based Quantum Computation NSF Workshop on Quantum Information Processing and Nanoscale Systems. Duncan Steel, Univ. Michigan.
Single Spin Detection J. Fernández-Rossier IUMA, Universidad de Alicante, Spain Manipulation and Measurement of the Quantum State of a single spin in a.
Studies of Minority Carrier Recombination Mechanisms in Beryllium Doped GaAs for Optimal High Speed LED Performance An Phuoc Doan Department of Electrical.
Optical study of Spintronics in III-V semiconductors
CAVITY QUANTUM ELECTRODYNAMICS IN PHOTONIC CRYSTAL STRUCTURES Photonic Crystal Doctoral Course PO-014 Summer Semester 2009 Konstantinos G. Lagoudakis.
3/22/05APS Meeting Los Angeles1 Magneto-optical properties of excitons confined to single magnetic and non-magnetic quantum dots Supported by NSF.
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
Photonic Crystal Fiber for Radiation Sensors Feng Wu Khalid Ikram Sacharia Albin Feng Wu Khalid Ikram Sacharia Albin Photonic Laboratory Old Dominion University.
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors J. Fernandez-Rossier ( University of Alicante, UT ), C. Piermarocchi (MS), P.
A. Abdi, T. B. Hoang, S. Mackowski, L. M. Smith and H. E. Jackson Department of Physics, University of Cincinnati, Ohio J. M. Yarrison-Rice.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Modeling of Energy States of Carriers in Quantum Dots
Quantum Dots in Photonic Structures
GaAs QUANTUM DOT COM Ray Murray. Why Quantum Dots? Novel “atom-like” electronic structure Immunity to environment Epitaxial growth Well established device.
ITOH Lab. Hiroaki SAWADA
Theory of Intersubband Antipolaritons Mauro F
Charge Carrier Related Nonlinearities
T. Smoleński 1, M. Goryca 1,2, T. Kazimierczuk 1, J. A. Gaj 1, P. Płochocka 2, M. Potemski 2,P. Wojnar 3, P. Kossacki 1,2 1. Institute of Experimental.
Engineering Spontaneous Emission in Hybrid Nanoscale Materials for Optoelectronics and Bio-photonics Arup Neogi Department of Physics and Materials Engineering.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
1 Components of Optical Instruments Lecture Silicon Diode Transducers A semiconductor material like silicon can be doped by an element of group.
スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
1 Optically Detected Magnetic Resonance (ODMR) and its Application to  -Conjugated Materials and Organic Light-Emitting Devices (OLEDs) Joseph Shinar.
Single spin detection Maksym Sladkov Top master nanoscience symposium June 23, 2005.
Fermi-Edge Singularitäten im resonanten Transport durch II-VI Quantenpunkte Universität Würzburg Am Hubland, D Michael Rüth, Anatoliy Slobodskyy,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Exciton and Biexciton Energies in GaN/AlN Quantum Dots G. Hönig, A. Schliwa, D. Bimberg, A. Hoffmann Teilprojekt A5 Institut für Festkörperphysik Technische.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
Plasma diagnostics using spectroscopic techniques
Ordered Quantum Wire and Quantum Dot Heterostructures Grown on Patterned Substrates Eli Kapon Laboratory of Physics of Nanostructures Swiss Federal Institute.
Dynamics of collective spin excitations in n-doped CdMnTe quantum wells M. Vladimirova, P. Barate, S. Cronenberger, D. Scalbert Groupe d'Etude des Semi-conducteurs,
Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P.
Luminescence basics Types of luminescence
Advisor: Prof. Yen-Kuang Kuo
Introduction to semiconductor technology. Outline –4 Excitation of semiconductors Optical absorption and excitation Luminescence Recombination Diffusion.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Seung Hyun Park Hyperfine Mapping of Donor Wave Function Deformations in Si:P based Quantum Devices Seung Hyun Park Advisors: Prof. Gerhard Klimeck Prof.
Quantum information processing with electron spins Florian Meier and David D. Awschalom Funding from: Optics & Spin Physics.
Introduction to Spintronics
The Structure and Dynamics of Solids
Diluted Magnetic Semiconductors
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Tunable excitons in gated graphene systems
Excitons in Excited States in a Quantum Well
BEC-BCS cross-over in the exciton gas
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Optical and Terahertz Spectroscopy of CdSe/ZnS Quantum Dots
Quantum Dot Lasers ASWIN S ECE S3 Roll no 23.
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Presentation transcript:

L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble, FRANCE Department of applied physics, University of Alicante, SPAIN Optical control of an individual spin

Introduction  Ultimate semiconductor spintronic device: Single magnetic ion / individual carriers -Control of the interaction between a single magnetic atom and an individual carrier. (spin injection, spin transfer) -Manipulation of an individual spin (memory, quantum computing) II-VI Semi-Magnetic semiconductor QDs Localized carriers Magnetic doping (Mn: S=5/2) …Towards a single spin memory.

Theoretical proposals Transport: A single QD containing a Mn atom could be use as a spin filter Nano-magnetism : electrical control of the magnetism. Hawrylak et al. Phys. Rev. Lett. 95, (2005) Qu et al. Phys. Rev. B74, (2006) Memories : writing and reading of the spin state of a single Mn atom. A.O. Govorov et al., Phys. Rev. B 71, (2005)

1. Probing the spin state of a single Magnetic atom - II-VI magnetic self assembled QDs - Carriers-Mn exchange interaction - Importance of QD structural parameters on the spin detection (Shape anisotropy, valence band mixing) 2. Carrier controlled Mn spin splitting - Anisotropy of the hole-Mn interaction - Charge tunable Mn-doped QDs 3. Carriers and Mn spin dynamics Outline

 UHV-AFM image of CdTe QDs on ZnTe. QDs density: cm -2 Size: d=15nm, h=3nm (Lz<<Lx,Ly)  TEM image of CdTe QDs on ZnTe. Individual CdTe/ZnTe QDs 100  m  Micro-spectroscopy.

J z =+1 J z = -1 Jz= - 2 J z = +2 G.S. B=0 eheh eheh -- ++ e: spin 1/2 h: anisotropic (J z =  3/2) Jz= -3/2 Jz= -1/2 Jz= +3/2 Jz= +1/2 Sz= +1/2 Sz= -1/2 ++ -- e hh lh Optical selection rules: z Optical transitions in an individual QD

 Electrical control of the charge.  Transfer of holes from the surface states: p type doping of the QDs. V p-ZnTe CdTe Gated charged quantum dots

Te Cd Mn Mn remplace Cd: Mn 2+ Mn 2+ S=5/2, 2S+1=6 Cd: 3d 10 4s 2 Mn: 3d 5 4s 2 Exchange interaction: Mn - electron Mn - hole Mn doped II-VI QDs Electron: σ = 1/2 Hole: j Z = ±3/2 Mn atom: S = 5/2  nm  nm h

 The presence of a single magnetic atom completely control the emission structure. Measurement of the exchange interaction energy of the electron, hole, Mn Phys Rev Lett. 93, (2004) Emission of Mn-doped individual QDs

X X+Mn 2+ S z = ±5/2, ±3/2, ±1/2 Mn 2+ -5/2 J z = -1 eheh J z = +1 eheh -3/2 -1/2 +1/2 +3/2 +5/2 J z = -1 eheh +5/2 +3/2 +1/2 -1/2 -3/2 -5/2 Exchange constant: s-d,  >0 p-d,  <0 J z = +1 eheh Heavy hole exciton Mn 2+ Heavy-hole exciton / Mn exchange coupling

X X+Mn 2+ Heavy hole exciton Mn 2+ -- -5/2 +5/2 … ++ -5/2 … 1 photon (energy, polar) = 1 Mn spin projection  Overall splitting controlled by I e-Mn and I h-Mn. Heavy-hole exciton / Mn exchange coupling

 Magnetic field dependent PL intensity distribution. N Mn =0N Mn =1 Mn-doped individual QDs under magnetic field

eheh Mn 2+ eheh eheh B eheh ++ -- B Jz = -1 Jz = +1 g Mn =2 Mn spin conservation Mn spin polarization  Boltzmann distribution of the Mn-Exciton system: T eff =12K Polarization of the Mn spin distribution

 Resonant excitation Complex excited states fine structure Selection of Mn spin distribution and spin conservation during the lifetime of the exciton. Statistic Mn spin distribution B=0T

0 1 2 Energy (meV) Th.Exp. Effective spin Hamiltonian: Carriers-Mn exchange coupling - X-Mn Overlap - QD shape - Strain distribution

 I e-Mn in a flat parabolic potential: Exchange integrals controlled by the overlap with the Mn atom. Decrease of X-Mn overlap 1.3 meV Detection condition: Exciton-Mn overlap

Influence of the QD shape Phys Rev Lett. 95, (2005) Influence of the valence band mixing Jz=+ - 3/2 Jz=+ - 1/2 Sz= +- 1/2 e hh lh Phys Rev B. 72, (R) (2005) QD3QD1QD2 Heavy-hole + Mn Detection condition: Structural parameters

 Inhomogeneous relaxation of strain in a strained induced QD (Bir & Pikus Hamiltonian): |3/2> |1/2> |-1/2> |-3/2> |3/2> = c1 |3/2>+ c2 |-1/2> c1>>c2 |-3/2> = c3 |-3/2>+ c4 |1/2> c3>>c4 ~ ~ = 0 ~ ~ via cross components because k     E   Valence band mixing in strained induced QDs

Allows simultaneous hole-Mn spin flip Possibility to flip from j z =+3/2 to -/3/2 via light holes Effective h-Mn interaction term in the Heavy hole Subspace eheh eheh  lh : Heavy-light hole mixing efficiency XX+Mn 2+ ~ ~ Influence of valence band mixing

Allows simultaneous hole-Mn spin flip Effective h-Mn interaction term in the Heavy hole Subspace eheh eheh  lh : Heavy-light hole mixing efficiency Exp. Th. Emission of “non-radiative” exciton states Possibility to flip from j z =+3/2 to -/3/2 via light holes ~ ~ Phys Rev B. 72, (R) (2005) Influence of valence band mixing

X-Mn in transverse B field «0» B // Faraday B┴B┴ Voigt Voigt: Complex fine structure… Suppression of the hole Mn exchange interaction Faraday: Zero field structure is conserved 001 «+1 »«-1 » Phys Rev B. 72, (R) (2005)

1. Probing the spin state of a single Magnetic atom - II-VI magnetic self assembled QDs - Carriers-Mn exchange interaction - Importance of QD structural parameters on the spin detection (Shape anisotropy, valence band mixing) 2. Carrier controlled Mn spin splitting - Anisotropy of the hole-Mn interaction - Charge tunable Mn-doped QDs 3. Carriers and Mn spin dynamics

Increase of the excitation density Increase of the number of carriers in the QD. Formation of the biexciton (binding energy 11meV) Similar fine structure for the exciton and the biexciton. eheh X X2X2 eheh Biexciton in a Mn-doped QD

 Optical control of the magnetization: - One exciton splits the Mn spin levels - With two excitons, the exchange interaction vanishes… X 2 (J=0) X, J=±1 G.S. σ + σ - Phys Rev B. 71, (R) (2005) Carrier controlled Mn spin splitting

Charge tunable sungle Mn-doped QDs allow us to probe independantly the interactions between electron and Mn or hole and Mn eheh eheh Phys Rev Lett. 97, (2006) Gated charged Mn-doped quantum dots

I e-Mn = 40 μeV I h-Mn (X+)= 95 μeV I h-Mn (X)= 150 μeV I h-Mn (X-)= 170 μeV ♦ The hole confinement is influenced by the Coulomb attraction X+, Mn X, Mn X-, Mn Mn h e Increasing the hole-Mn overlap by injecting electrons in the QD X+, Mn hardly resolved eheh eheh Variation of hole-Mn exchange interaction

J=3 J=2 Final state: 1 e + 1 Mn Isotropic e-Mn interaction Anisotropic h-Mn interaction Initial state: 1 h + 1 Mn eheh eheh  Negatively charged exciton in a Mn doped QD

J=3 J=2 ♦ Optical transitions between: Proportional to the overlap: Eigenstates of H e-Mn J z =-1 Optical recombination of the charged exciton

J=3 J=2 Energy Probability 1 Optical recombination of the charged exciton

J=3 J=2  Energy Probability 1 Optical recombination of the charged exciton

J=3 J=2  Energy Probability 1 e-Mn: isotropic h-Mn: anisotropic Optical recombination of the charged exciton

J=3 J=2 Final state: 1 e + 1 Mn Initial state: 1 h + 1 Mn eheh (+3/2,-1/2) (-3/2,+1/2)  Phys Rev Lett. 97, (2006) Charged exciton in a single QD: Influence of VBM

J=3 J=2 Final state: 1 e + 1 Mn Initial state: 1 h + 1 Mn eheh (+3/2,-1/2) (-3/2,+1/2)  Charged exciton in a single QD: Influence of VBM

♦ X-, Mn♦ X+, Mn e, Mn h, Mn e, Mn ♦ Reversed initial and final states J=3 J=2 Negatively / Positively charged Mn-doped QDs

Heisenberg STST Q=-1Q=0Q=+1 Free hh Ising MzMz Mn+1h= Nano-Magnet Energy Gated controlled magnetic anisotropy

1. Probing the spin state of a single Magnetic atom - II-VI magnetic self assembled QDs - Carriers-Mn exchange interaction - Importance of QD structural parameters on the spin detection (Shape anisotropy, valence band mixing) 2. Carrier controlled Mn spin splitting - Anisotropy of the hole-Mn interaction - Charge tunable Mn-doped QDs 3. Carriers and Mn spin dynamics

Spin dynamics vs photon statistics 1 photon (σ, E) 1 Mn spin state 1 Mn atom S z If S z (t=0) = -5/2 t 0 1 ~1/6 -5/2 ? P (S z = -5/2) -- -5/2 +5/2 … ++ -5/2 … Photon statistics ?

Correlation measurement on single QDs Use of a SIL to increase the signal Select a QD with a large splitting to spectrally isolate a Mn spin state Single emitter statistics : Antibunching: The QDs cannot emit two photons with a given energy at the same time Whole PL autocorrelation

Single Mn spin dynamics Auto Correlation on one line in one polarization One Mn spin projection XX+Mn 2+ E τ X-Mn Photon bunching at short delay 8 ns t  +, -5/2)

Auto Correlation on one line in one polarization σ + One Mn spin projection XX+Mn 2+ E τ X-Mn Single Mn spin dynamics Mixing between Mn spin relaxation time and X-Mn spin relaxation time 2 x P 0 P0P0 3 x P 0 Power dependence

Single Mn spin dynamics -- -5/2 +5/2 … ++ -5/2 … Direct evidence of the spin transfer Polarization Cross-Correlation σ + One Mn spin projection σ - Influence of magnetic field?...To be continued…

 Optical probing of a single carrier/single magnetic atom interaction. - The exchange coupling is controlled by the carrier / Mn overlap. - BUT, real self assembled QDs:- Shape anisotropy - Valence band mixing …. Store information on a single spin?  Hole-Mn complex is highly anisotropic but non-negligeable effects of heavy-light hole mixing  Charged single Mn-doped QDs: Change the magnetic properties of the Mn with a single carrier. Summary  Photon statistics reveals a complex spin dynamics.