Exploiting Temporal Coherence for Incremental All-Frequency Relighting Ryan OverbeckRavi Ramamoorthi Aner Ben-ArtziEitan Grinspun Columbia University Ng.

Slides:



Advertisements
Similar presentations
Normal Mapping for Precomputed Radiance Transfer
Advertisements

Clustered Principal Components for Precomputed Radiance Transfer Peter-Pike Sloan Microsoft Corporation Jesse Hall, John Hart UIUC John Snyder Microsoft.
All-Frequency PRT for Glossy Objects Xinguo Liu, Peter-Pike Sloan, Heung-Yeung Shum, John Snyder Microsoft.
Bi-Scale Radiance Transfer Peter-Pike Sloan Xinguo Liu Heung-Yeung Shum John Snyder Microsoft.
Precomputed Radiance Transfer
Local, Deformable Precomputed Radiance Transfer
Spherical Harmonic Lighting Jaroslav Křivánek. Overview Function approximation Function approximation Spherical harmonics Spherical harmonics Some other.
Spherical Convolution in Computer Graphics and Vision Ravi Ramamoorthi Columbia Vision and Graphics Center Columbia University SIAM Imaging Science Conference:
Spherical Harmonic Lighting of Wavelength-dependent Phenomena Clifford Lindsay, Emmanuel Agu Worcester Polytechnic Institute (USA)
Frequency Domain Normal Map Filtering Charles Han Bo Sun Ravi Ramamoorthi Eitan Grinspun Columbia University.
All-Frequency Rendering of Dynamic, Spatially-Varying Reflectance
Scalability with many lights II (row-column sampling, visibity clustering) Miloš Hašan.
Rendering with Environment Maps Jaroslav Křivánek, KSVI, MFF UK
PRT Summary. Motivation for Precomputed Transfer better light integration and light transport –dynamic, area lights –shadowing –interreflections in real-time.
Real-Time, All-Frequency Shadows in Dynamic Scenes Thomas Annen * Zhao Dong * Tom Mertens † Philippe Bekaert † Hans-Peter Seidel * Jan Kautz ‡ *MPI Informatik.
Precomputed Local Radiance Transfer for Real-time Lighting Design Anders Wang Kristensen Tomas Akenine-Moller Henrik Wann Jensen SIGGRAPH ‘05 Presented.
Real-Time Rendering Paper Presentation Imperfect Shadow Maps for Efficient Computation of Indirect Illumination T. Ritschel T. Grosch M. H. Kim H.-P. Seidel.
Master Thesis Lighting and materials for real-time game engines
A Signal-Processing Framework for Forward and Inverse Rendering COMS , Lecture 8.
An Efficient Representation for Irradiance Environment Maps Ravi Ramamoorthi Pat Hanrahan Stanford University.
Advanced Computer Graphics (Fall 2010) CS 283, Lecture 18: Precomputation-Based Real-Time Rendering Ravi Ramamoorthi
Real-Time Rendering COMS , Lecture 9. Real-Time Rendering Demo Motivation: Interactive rendering with complex natural illumination and realistic,
Efficient Complex Shadows from Environment Maps Aner Ben-Artzi – Columbia UniversityRavi Ramamoorthi – Columbia University Maneesh Agrawala – Microsoft.
Computational Fundamentals of Reflection COMS , Lecture
Advanced Computer Graphics (Fall 2009) CS , Lecture 1: Introduction and History Ravi Ramamoorthi Some.
1 Compression and Real-time Rendering of Measured BTFs using local-PCA Mueller, Meseth, Klein Bonn University Computer Graphics Group.
Direct-to-Indirect Transfer for Cinematic Relighting Milos Hasan (Cornell University) Fabio Pellacini (Dartmouth College) Kavita Bala (Cornell University)
Advanced Computer Graphics (Fall 2010) CS 283, Lecture 17: Frequency Analysis and Signal Processing for Rendering Ravi Ramamoorthi
Real-Time High Quality Rendering COMS 6160 [Fall 2004], Lecture 4 Shadow and Environment Mapping
Jiaping Wang 1 Peiran Ren 1,3 Minmin Gong 1 John Snyder 2 Baining Guo 1,3 1 Microsoft Research Asia 2 Microsoft Research 3 Tsinghua University.
Real-Time High Quality Rendering COMS 6160 [Fall 2004], Lecture 3 Overview of Course Content
Precomputed Radiance Transfer Harrison McKenzie Chapter.
Matrix Row-Column Sampling for the Many-Light Problem Miloš Hašan (Cornell University) Fabio Pellacini (Dartmouth College) Kavita Bala (Cornell University)
A Theory of Locally Low Dimensional Light Transport Dhruv Mahajan (Columbia University) Ira Kemelmacher-Shlizerman (Weizmann Institute) Ravi Ramamoorthi.
A Signal-Processing Framework for Forward and Inverse Rendering Ravi Ramamoorthi Stanford University Columbia University: Feb 11, 2002.
Real-Time Rendering and Interaction with Complex Lighting and Materials Ravi Ramamoorthi Rendering Laboratory Columbia University Intel: August 13, 2004.
Face Relighting with Radiance Environment Maps Zhen Wen 1, Zicheng Liu 2, Thomas Huang 1 Beckman Institute 1 University of Illinois Urbana, IL61801, USA.
Titre.
Pre-computed Radiance Transfer Jaroslav Křivánek, KSVI, MFF UK
PG 2011 Pacific Graphics 2011 The 19th Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2011) will be held on September 21 to.
ICheat: A Representation for Artistic Control of Cinematic Lighting Juraj ObertJaroslav Křivánek Daniel Sýkora Fabio Pellacini Sumanta Pattanaik
Sebastian Enrique Columbia University Relighting Framework COMS 6160 – Real-Time High Quality Rendering Nov 3 rd, 2004.
Real-Time Rendering Digital Image Synthesis Yung-Yu Chuang 01/03/2006 with slides by Ravi Ramamoorthi and Robin Green.
An Efficient Representation for Irradiance Environment Maps Ravi Ramamoorthi Pat Hanrahan Stanford University SIGGRAPH 2001 Stanford University SIGGRAPH.
Real-Time Relighting Digital Image Synthesis Yung-Yu Chuang 1/10/2008 with slides by Ravi Ramamoorthi, Robin Green and Milos Hasan.
Real-time Shading with Filtered Importance Sampling Jaroslav Křivánek Czech Technical University in Prague Mark Colbert University of Central Florida.
View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.
A Frequency Analysis of Light Transport Fr é do Durand – MIT CSAIL With Nicolas Holzschuch, Cyril Soler, Eric Chan & Francois Sillion Artis Gravir/Imag-Inria.
All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation Ren Ng Stanford Ravi Ramamoorthi Columbia SIGGRAPH 2003 Pat Hanrahan Stanford.
1 Implicit Visibility and Antiradiance for Interactive Global Illumination Carsten Dachsbacher 1, Marc Stamminger 2, George Drettakis 1, Frédo Durand 3.
Real-time Indirect Lighting Using Clustering Visibility Zhao, Tobias, Thorsten, Jan* *University College London.
Characteristic Point Maps Hongzhi Wu Julie Dorsey Holly Rushmeier (presented by Patrick Paczkowski) Computer Graphics Lab Yale University.
Quick survey about PRT Valentin JANIAUT KAIST (Korea Advanced Institute of Science and Technology)
Real-time Rendering of Heterogeneous Translucent Objects with Arbitrary Shapes Stefan Kinauer KAIST (Korea Advanced Institute of Science and Technology)
Fast Approximation to Spherical Harmonics Rotation Sumanta Pattanaik University of Central Florida Kadi Bouatouch IRISA / INRIA Rennes Jaroslav Křivánek.
Fast Approximation to Spherical Harmonics Rotation
Real-Time High Quality Rendering CSE 291 [Winter 2015], Lecture 2 Graphics Hardware Pipeline, Reflection and Rendering Equations, Taxonomy of Methods
- Laboratoire d'InfoRmatique en Image et Systèmes d'information
Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister.
Precomputed Radiance Transfer Field for Rendering Interreflections in Dynamic Scenes Minhao Pan, Rui Wang, Xinguo Liu, Qunsheng Peng and Hujun Bao State.
Thank you for the introduction
Non-Linear Kernel-Based Precomputed Light Transport Paul Green MIT Jan Kautz MIT Wojciech Matusik MIT Frédo Durand MIT Henrik Wann Jensen UCSD.
Radiance Cache Splatting: A GPU-Friendly Global Illumination Algorithm P. Gautron J. Křivánek K. Bouatouch S. Pattanaik.
All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation Ren Ng Stanford Ravi Ramamoorthi Columbia Pat Hanrahan Stanford.
Toward Real-Time Global Illumination. Global Illumination == Offline? Ray Tracing and Radiosity are inherently slow. Speedup possible by: –Brute-force:
Toward Real-Time Global Illumination. Project Ideas Distributed ray tracing Extension of the radiosity assignment Translucency (subsurface scattering)
Interactive Rendering of Translucent Deformable Objects Tom Mertens 1, Jan Kautz 2, Philippe Bekaert 1, Hans-Peter Seidel 2, Frank Van Reeth
A Practical Analytic Single Scattering Model for Real Time Rendering
Fu-Chung Huang Ravi Ramamoorthi University of California, Berkeley
Real-time Global Illumination with precomputed probe
Presentation transcript:

Exploiting Temporal Coherence for Incremental All-Frequency Relighting Ryan OverbeckRavi Ramamoorthi Aner Ben-ArtziEitan Grinspun Columbia University Ng et al Our Method 30 Wavelet lights per frame

Ng et al Our Method 30 Wavelet lights per frame

CG Lighting Design Doom ( Unreal Championship ( The Lord of the Rings: The Two Towers 2002 ( Star Wars Episode I 1999 (thecia.com.au/reviews/s/star-wars-1.shtml)thecia.com.au/reviews/s/star-wars-1.shtml Video Games Movies

CG Lighting Design: Why is it hard? n Complex Lighting n Complex Materials n Takes Hours to Render n Need Interactivity n PRT n Sloan et al n Ng et al Hard Shadows Soft Shadows Specularities / Reflections Caustics

PRT Relighting: Matrix-Vector Multiply Slides from Ng et al. SIGGRAPH 2003

PRT Relighting: Matrix-Vector Multiply Input Lighting (Cubemap Vector) Output Image (Pixel Vector) Transport Matrix Slides from Ng et al. SIGGRAPH 2003

Light-Transport Matrix Columns Slides from Ng et al. SIGGRAPH 2003

Light-Transport Matrix Columns Slides from Ng et al. SIGGRAPH 2003

Light-Transport Matrix Rows Slides from Ng et al. SIGGRAPH 2003

Light-Transport Matrix Rows Slides from Ng et al. SIGGRAPH 2003

Light-Transport Matrix Rows Slides from Ng et al. SIGGRAPH 2003

Matrix Multiplication is Enormous Dimension n 512 x 512 pixel images ( ) n 6 x 64 x 64 cubemap ( ) Full matrix-vector multiplication is intractable n On the order of operations per frame PRT exploits coherence to enable real-time rendering Slides from Ng et al. SIGGRAPH 2003

Signal / Spatial Coherence [Sloan et al. 2003] [Liu et al. 2004] PRT: Exploiting Coherence Image / Vertex Colors Transport Matrix Lighting Vector Angular Coherence [Ng et al. 2003] 30 – 100 Wavelet Lights Temporal Coherence [Our Contribution]

Previous Work: PRT n Dorsey, J., Arvo, J., and Greenberg, D Interactive Design of Complex Time-Dependent Lighting. In IEEE Computer Graphics and Applications, 15(2): n Ramamoorthi, R., and Hanrahan, P An efficient representation for irradiance environment maps. In Proceedings of SIGGRAPH 2001, n Sloan, P., Kautz, J., Snyder, J. Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low- Frequency Environments. In Proceedings of SIGGRAPH n Ng R., Ramamoorthi R., Hanrahan P. All-frequency shadows using non-linear wavelet lighting approximation. ACM TOG(SIGGRAPH 03) 22, 3 (2003), n Sloan P., Hall J., Hart. J, Snyder J. Clustered principal components for precomputed radiance transfer. ACM TOG (SIGGRAPH 03) 22, 3 (2003), n Wang R., Tran J., Luebke D. All-frequency relighting of non-diffuse objects using separable BRDF approximation. In EGSR (2004), pp

Previous Work: PRT Dorsey, J., Arvo, J., and Greenberg, D Interactive Design of Complex Time-Dependent Lighting. In IEEE Computer Graphics and Applications, 15(2): Ng R., Ramamoorthi R., Hanrahan P. All-frequency shadows using non-linear wavelet lighting approximation. ACM TOG(SIGGRAPH 03) 22, 3 (2003), Sloan, P., Kautz, J., Snyder, J. Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Environments. In Proceedings of SIGGRAPH 2002 Ng R., Ramamoorthi R., Hanrahan P. Triple product wavelet integrals for all-frequency relighting. ACM TOG (SIGGRAPH 04) 23, 3 (2004), Sloan P., Hall J., Hart. J, Snyder J. Clustered principal components for precomputed radiance transfer. ACM TOG (SIGGRAPH 03) 22, 3 (2003), Sloan P., Luna B., Snyder J. Local, deformable precomputed radiance transfer. ACM TOG (SIGGRAPH 05) 24, 4 (2005), Wang R., Tran J., Luebke D. All-frequency relighting of non-diffuse objects using separable BRDF approximation. In EGSR (2004), pp Wang R., Tran J., Luebke D. All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM TOG (SIGGRAPH 05) 24, 3 (2005), Zhou K., Hu Y., Lin S., Guo B., Shum H. Precomputed shadow fields for dynamic scenes. ACM TOG (SIGGRAPH 05) 25, 3 (2005). Ben-Artzi A., Overbeck R., Ramamoorthi R. Real-time BRDF editing in complex lighting. ACM TOG (SIGGRAPH 06) (2006). Wang R., Luebke D., Humphreys G., Ng R. Efficient wavelet rotation for environment map rendering. In EGSR (2006). Kontkanen J., Turquin E., Holzschuch N., Sillion F. Wavelet radiance transport for real-time indirect lighting. In EGSR (2006) Einarsson P., Chabert C., Jones A., Lamond B., Ma A., Hawkins T., Sylwan S., Debevec P. Relighting human locomotion with flowed reflectance fields. In EGSR (2006) This Session

Previous Work: PRT Dorsey, J., Sillion, F., and Greenberg, D Design and simulation of opera lighting and projection effects. In Computer Graphics (Proceedings of SIGGRAPH 91), vol. 25, Ng R., Ramamoorthi R., Hanrahan P. All-frequency shadows using non-linear wavelet lighting approximation. ACM TOG(SIGGRAPH 03) 22, 3 (2003), Sloan, P., Kautz, J., Snyder, J. Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Environments. In Proceedings of SIGGRAPH 2002 Ng R., Ramamoorthi R., Hanrahan P. Triple product wavelet integrals for all-frequency relighting. ACM TOG (SIGGRAPH 04) 23, 3 (2004), Sloan P., Hall J., Hart. J, Snyder J. Clustered principal components for precomputed radiance transfer. ACM TOG (SIGGRAPH 03) 22, 3 (2003), Sloan P., Luna B., Snyder J. Local, deformable precomputed radiance transfer. ACM TOG (SIGGRAPH 05) 24, 4 (2005), Wang R., Tran J., Luebke D. All-frequency relighting of non-diffuse objects using separable BRDF approximation. In EGSR (2004), pp Wang R., Tran J., Luebke D. All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM TOG (SIGGRAPH 05) 24, 3 (2005), Zhou K., Hu Y., Lin S., Guo B., Shum H. Precomputed shadow fields for dynamic scenes. ACM TOG (SIGGRAPH 05) 25, 3 (2005). Ben-Artzi A., Overbeck R., Ramamoorthi R. Real-time BRDF editing in complex lighting. ACM TOG (SIGGRAPH 06) (2006). Wang R., Luebke D., Humphreys G., Ng R. Efficient wavelet rotation for environment map rendering. In EGSR (2006). Kontkanen J., Turquin E., Holzschuch N., Sillion F. Wavelet radiance transport for real-time indirect lighting. In EGSR (2006) Einarsson P., Chabert C., Jones A., Lamond B., Ma A., Hawkins T., Sylwan S., Debevec P. Relighting human locomotion with flowed reflectance fields. In EGSR (2006) This Session Temporal Coherence [Our Contribution]

Our Method

Outline n Motivation / Previous Work n Basic Approach to Incremental Relighting n Analysis of Temporal Coherence in Lighting n Per-Band Incremental n Results

Basic Incremental Algorithm

More Compressible

Basic Incremental Algorithm

Basic Incremental

Basic Incremental: Problems Reference Incremental Frame 0

Basic Incremental: Problems Reference Incremental Frame 30

Basic Incremental: Problems Reference Incremental Frame 75 Ghost Shadows

Basic Incremental: Problems Reference Incremental Frame 125

Basic Incremental: Problems Reference Incremental Frame 400

Basic Incremental: Problems

Outline n Motivation / Previous Work n Basic Approach for Incremental Relighting n Analysis of Temporal Coherence in Lighting n Per-Band Incremental n Results

Medium Frequency Low Frequency Frequency Analysis of Temporal Coherence High Frequency

Medium Frequency Low Frequency Frequency Analysis of Temporal Coherence High Frequency

Medium Frequency Low Frequency Frequency Analysis of Temporal Coherence High Frequency

Low Frequency Medium Frequency Frequency Analysis of Temporal Coherence High Frequency

Low Frequency Medium Frequency Frequency Analysis of Temporal Coherence High Frequency

Low Frequency Medium Frequency Frequency Analysis of Temporal Coherence High Frequency

Frequency Analysis of Temporal Coherence Medium Frequency Low Frequency High Frequency Temporal Wavelet Transform

Frequency Analysis of Temporal Coherence Medium Frequency Low Frequency High Frequency Temporal Wavelet Transform

Frequency Analysis of Temporal Coherence Angular Frequency Temporal Frequency 100 % 0 % ENERGY

Outline n Motivation / Previous Work n Basic Approach for Incremental Relighting n Analysis of Temporal Coherence in Lighting n Per-Band Incremental n Results

B = + + Non-Incremental B = T L Incremental +  +  1 B 2 B 3 B Per-Band Incremental (PBI)

n Exhaustive n Try all combinations over all wavelet bands. n Very Slow. n Simple n Compare L1 Error in each band individually. Oracle (Incremental or Not)

Exhaustive n Try all combinations over all wavelet bands. n Very Slow. Simple n Compare L1 Error in each band individually. Oracle (Incremental or Not) L1 Distance Incremental Non-Incremental

Oracle (Incremental or Not) L1 Distance Incremental Non-Incremental n Exhaustive n Try all combinations over all wavelet bands. n Very Slow. n Simple n Compare L1 Error in each band individually. n Almost zero overhead. n Comparable results to Exhaustive.

PBI vs. Basic Incremental

Outline n Motivation / Previous Work n Basic Approach for Incremental Relighting n Analysis of Temporal Coherence in Lighting n Per-Band Incremental n Results

Results

Per-Band Incremental 30 Wavelets Frame Percentage L1 Error Simple Exhaustive

Results

Per-Band Incremental 30 Wavelets Frame Percentage L1 Error Simple Exhaustive

Results

Per-Band Incremental n 3x – 4x Speed / Quality Improvement n Progressively Convergent n Minimal Overhead

Minimal Overhead n ~ 100 Lines of Code (Pseudo-code in paper). n < 10 % Memory Overheads n Speed: n Average case (30 wavelets): 5 % Overhead

Per-Band Incremental

Applies to All (?) Wavelet PRT Frameworks n Old PRT n Standard All-Frequency PRT [Ng et al. 2003] n Current PRT n Clustered PCA [Liu et al. 2004] n Changing View with Separable BRDF Approximation [Wang et al. 2004] n Future PRT n Real-time BRDF Editing [Ben-Artzi et al. SIGGRAPH 2006]

PBI: CPCA and Complex BRDFs

Summary n Added temporal coherence to PRT. n Analysis of temporal coherence in lighting. n Per-Band Incremental algorithm. n Minimal Overhead. n Minimal Code. n Applies to all (?) current PRT frameworks. n See Ben-Artzi et al. Real-time BRDF Editing at SIGGRAPH 2006

Future n Limitations n Shadows get softer during rotation. n Good for Lighting Design. n Bad for Video Games.

Future n Temporal Coherence n PRT Animation. n Beyond PRT.

Acknowledgments n Ren Ng for wavelet relighting framework code and slides from SIGGRAPH n Microsoft / Sloan et al. for Spherical Harmonics relighting framework in DirectX SDK. n This research was funded in part by a Sloan Research Fellowship and NSF grants # and # n Londa Fiorella for getting me here. Thank you!