4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Slides:



Advertisements
Similar presentations
Chapter 4 Digital Transmission
Advertisements

4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Lecture 26 Physical Layer Ch 4: Digital Transmission
Chapter 4 Digital Transmission
1 Computer Communication & Networks Lecture 6 Physical Layer: Digital Transmission Waleed Ejaz
Chapter 4 Digital Transmission
Computer Networks1 Chapter 4 Digital Transmission.
CSCD 218 : DATA COMMUNICATIONS AND NETWORKING 1
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 4 Digital Transmission.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Chapter 4 Digital Transmission Stephen Kim 4.1.
Data Communication Networks Lec 8 and 9. Physical Layer and Media Bottom-most layer. Interacts with transmission media. Physical part of the network.
Chapter 4 Digital Transmission
CIT 307 Online Data Communications Digital Transmission Module 5 Kevin Siminski, Instructor.
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4 Digital Transmission
Chapter 4 Digital Transmission.
Computer Communication & Networks Lecture # 05 Physical Layer: Signals & Digital Transmission Nadeem Majeed Choudhary
1 Kyung Hee University Digital Transmission. 2 Kyung Hee University 4 장 Digital Transmission 4.1 Line Coding 4.2 Block Coding 4.3 Sampling 4.4 Transmission.
การสื่อสารข้อมูลและเครือข่าย คอมพิวเตอร์ Data Communication and Networks บทที่ 2 พื้นฐานข้อมูลและ สัญญาณ อาจารย์ผู้สอน : ดร. วีรพันธุ์ ศิริฤทธิ์ .
BZUPAGES.COM 4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Digital Signal Encoding
Chapter 4 Digital Transmission.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 4 Digital Transmission.
: Data Communication and Computer Networks
British Computer Society (BCS)
Chapter 4 Digital Transmission.
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
DIGITAL-TO-DIGITAL CONVERSION In this section, we see how we can represent digital data by using digital signals. The conversion involves three.
Kashif BashirWWW.Taleem.greatnow.com Chapter 4 Digital Transmission.
9/12/ Digital Transmisison - Lin 1 CPET/ECET Digital Transmission Data Communications and Networking Fall 2004 Professor Paul I-Hai Lin Electrical.
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Digital Transmission & Analog Transmission. 4.#2 1. DIGITAL-TO-DIGITAL CONVERSION Digital Data -> Digital Signal Three techniques: 1.line coding (always.
Chapter 4 Digital Transmission. 4.#2 4-1 DIGITAL-TO-DIGITAL CONVERSION line coding, block coding, and scrambling. Line coding is always needed; block.
Chapter 4 Digital Transmission.
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Spring 2007Data Communications, Kwangwoon University4-1 Chapter 4. Digital Transmission 1.Digital-to-Digital Conversion 2.Analog-to-Digital Conversion.
4.1 Digital Transmission. DIGITAL-TO-DIGITAL CONVERSION In this section, we see how we can represent digital data by using digital signals. The conversion.
Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4 Digital Transmission
Topics discussed in this section:
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Excerpts from Slides of Chapter 4 Forouzan Digital Transmission.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 4 Digital Transmission.
A. B. M. Nasiruzzaman Dept. of EEE, RUET According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in.
Chapter 4 Digital Transmission. 4.2 Summary Line Coding Line Coding Schemes Block Coding Scrambling Signal Element versus data element Multilevel : 2b1Q.
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
McGraw-Hill©2003 The McGraw-Hill Companies, Inc. Chapter 6 Physical Layer.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Physical Layer Summary Data-to-Signal Digital-to-Analog (Modem) Analog-to-Analog (Modem) Digital-to-Digital.
Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CSE 320 Data Communications
1 CSCD 433 Network Programming Fall 2016 Lecture 4 Digital Line Coding and other...
Data Communication and Networking Digital Transmission Chapter 4.
Lecturer: Mrs. Rohani bt Hassan
Chapter 4 Digital Transmission
Chapter 4. Digital Transmission
Introduction to Information Technologies
Topics discussed in this section:
Data Communication Networks
Prepared By Mr. Arshad Ahmad
Chapter 4 Digital Transmission.
Chapter 4 Digital Transmission
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4 Digital Transmission
Chapter 4 Digital Transmission
4. TRANSMISI DIGITAL.
Introduction to Information Technologies
Chapter 4 Digital Transmission
Disadvantages of Analog Transmission
Chapter 4 Digital Transmission
Chapter 4 Digital Transmission 4.# 1
Presentation transcript:

4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4.2 Line coding, block coding, and scrambling, Polar Encoding, Manchester encoding, Differential manchester encoding,line coding, block coding, and scrambling,parallel transmission, serial transmission,asynchronous, synchronous, and isochronous, Bit, Byte

DIGITAL-TO-DIGITAL CONVERSION In this section, we see how we can represent digital data by using digital signals. The conversion involves three techniques: line coding, block coding, and scrambling. Line coding is always needed; block coding and scrambling may or may not be needed. Line Coding Line Coding Schemes Block Coding Scrambling Topics discussed in this section:

4.4 Figure 4.1 Line coding and decoding

4.5 Figure 4.2 Signal element versus data element

4.6 A signal is carrying data in which one data element is encoded as one signal element ( r = 1). If the bit rate is 100 kbps, what is the average value of the baud rate if c is between 0 and 1? Solution We assume that the average value of c is 1/2. The baud rate is then Example 4.1

4.7 Although the actual bandwidth of a digital signal is infinite, the effective bandwidth is finite. Note

4.8 The maximum data rate of a channel (see Chapter 3) is N max = 2 × B × log 2 L (defined by the Nyquist formula). Does this agree with the previous formula for N max ? Solution A signal with L levels actually can carry log 2 L bits per level. If each level corresponds to one signal element and we assume the average case (c = 1/2), then we have Example 4.2

4.9 Effect of lack of synchronization: In order to interpret correctly the signal received, the bit interval of both sender and receiver must correspond exactly.

4.10 In a digital transmission, the receiver clock is 0.1 percent faster than the sender clock. How many extra bits per second does the receiver receive if the data rate is 1 kbps? How many if the data rate is 1 Mbps? Solution At 1 kbps, the receiver receives 1001 bps instead of 1000 bps. Example 4.3 At 1 Mbps, the receiver receives 1,001,000 bps instead of 1,000,000 bps.

4.11 Figure 4.4 Line coding schemes

4.12 Figure 4.8 Polar biphase: Manchester and differential Manchester schemes

4.13 In Manchester and differential Manchester encoding, the transition at the middle of the bit is used for synchronization. Note

4.14 The minimum bandwidth of Manchester and differential Manchester is 2 times that of NRZ. Note

4.15 In bipolar encoding, we use three levels: positive, zero, and negative. Note

4.16 Table 4.1 Summary of line coding schemes

4.17 Block coding is normally referred to as mB/nB coding; it replaces each m-bit group with an n-bit group. Note

4.18 Figure 4.14 Block coding concept

4.19 Figure 4.15 Using block coding 4B/5B with NRZ-I line coding scheme

4.20 We need to send data at a 1-Mbps rate. What is the minimum required bandwidth, using a combination of 4B/5B and NRZ-I or Manchester coding? Solution First 4B/5B block coding increases the bit rate to 1.25 Mbps. The minimum bandwidth using NRZ-I is N/2 or 625 kHz. The Manchester scheme needs a minimum bandwidth of 1 MHz. The first choice needs a lower bandwidth, but has a DC component problem; the second choice needs a higher bandwidth, but does not have a DC component problem. Example 4.5

4.21 We want to digitize the human voice. What is the bit rate, assuming 8 bits per sample? Solution The human voice normally contains frequencies from 0 to 4000 Hz. So the sampling rate and bit rate are calculated as follows: Example 4.14

TRANSMISSION MODES The transmission of binary data across a link can be accomplished in either parallel or serial mode. In parallel mode, multiple bits are sent with each clock tick. In serial mode, 1 bit is sent with each clock tick. While there is only one way to send parallel data, there are three subclasses of serial transmission: asynchronous, synchronous, and isochronous. Parallel Transmission Serial Transmission Topics discussed in this section:

4.23 Figure 4.31 Data transmission and modes

4.24 Figure 4.32 Parallel transmission: Send n bits instead of 1 at a time

4.25 Figure 4.33 Serial transmission

4.26 In asynchronous transmission, we send 1 start bit (0) at the beginning and 1 or more stop bits (1s) at the end of each byte. There may be a gap between each byte. Note

4.27 Asynchronous here means “asynchronous at the byte level,” but the bits are still synchronized; their durations are the same. The timing of a signal is not important Note

4.28 Figure 4.34 Asynchronous transmission

4.29 In synchronous transmission, we send bits one after another without start or stop bits or gaps. It is the responsibility of the receiver to group the bits. Timing is very important because the accuracy of the information depends on an accurate counts of the number of bits received. Note

4.30 Figure 4.35 Synchronous transmission