Art of Multiprocessor Programming1 Concurrent Hashing Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Modified.

Slides:



Advertisements
Similar presentations
CS4432: Database Systems II Hash Indexing 1. Hash-Based Indexes Adaptation of main memory hash tables Support equality searches No range searches 2.
Advertisements

Hash-Based Indexes Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY.
Hash-based Indexes CS 186, Spring 2006 Lecture 7 R &G Chapter 11 HASH, x. There is no definition for this word -- nobody knows what hash is. Ambrose Bierce,
1 Hash-Based Indexes Module 4, Lecture 3. 2 Introduction As for any index, 3 alternatives for data entries k* : – Data record with key value k – –Choice.
Hash-Based Indexes The slides for this text are organized into chapters. This lecture covers Chapter 10. Chapter 1: Introduction to Database Systems Chapter.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11.
CPSC 404, Laks V.S. Lakshmanan1 Hash-Based Indexes Chapter 11 Ramakrishnan & Gehrke (Sections )
Chapter 11 (3 rd Edition) Hash-Based Indexes Xuemin COMP9315: Database Systems Implementation.
Hashing as a Dictionary Implementation
ICS 421 Spring 2010 Indexing (2) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 2/23/20101Lipyeow Lim.
Shared Counters and Parallelism Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit.
Hash Table indexing and Secondary Storage Hashing.
1 Hash-Based Indexes Yanlei Diao UMass Amherst Feb 22, 2006 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
1 Chapter 9 Maps and Dictionaries. 2 A basic problem We have to store some records and perform the following: add new record add new record delete record.
Distributed Systems – Roger Wattenhofer –8/1 Small Systems Chapter 8.
1 CSE 326: Data Structures Hash Tables Autumn 2007 Lecture 14.
CS 261 – Data Structures Hash Tables Part II: Using Buckets.
1 Hash-Based Indexes Chapter Introduction  Hash-based indexes are best for equality selections. Cannot support range searches.  Static and dynamic.
FALL 2004CENG 3511 Hashing Reference: Chapters: 11,12.
1 Hash-Based Indexes Chapter Introduction : Hash-based Indexes  Best for equality selections.  Cannot support range searches.  Static and dynamic.
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Chapter 13 Disk Storage, Basic File Structures, and Hashing.
Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Concurrent Skip Lists.
Introducing Hashing Chapter 21 Copyright ©2012 by Pearson Education, Inc. All rights reserved.
COSC 2007 Data Structures II
(c) University of Washingtonhashing-1 CSC 143 Java Hashing Set Implementation via Hashing.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 17 Disk Storage, Basic File Structures, and Hashing.
Hashing and Hash-Based Index. Selection Queries Yes! Hashing  static hashing  dynamic hashing B+-tree is perfect, but.... to answer a selection query.
Hashing as a Dictionary Implementation Chapter 19.
CSC 427: Data Structures and Algorithm Analysis
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11 Modified by Donghui Zhang Jan 30, 2006.
Hashing and Natural Parallism Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit.
Hashing and Natural Parallism Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit.
“Never doubt that a small group of thoughtful, committed people can change the world. Indeed, it is the only thing that ever has.” – Margaret Meade Thought.
Introduction to Database, Fall 2004/Melikyan1 Hash-Based Indexes Chapter 10.
1.1 CS220 Database Systems Indexing: Hashing Slides courtesy G. Kollios Boston University via UC Berkeley.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Indexed Sequential Access Method.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 10.
(c) University of Washington16-1 CSC 143 Java Linked Lists Reading: Ch. 20.
CSS446 Spring 2014 Nan Wang.  To understand the implementation of linked lists and array lists  To analyze the efficiency of fundamental operations.
Building Java Programs Bonus Slides Hashing. 2 Recall: ADTs (11.1) abstract data type (ADT): A specification of a collection of data and the operations.
Hashtables. An Abstract data type that supports the following operations: –Insert –Find –Remove Search trees can be used for the same operations but require.
Monitors and Blocking Synchronization Dalia Cohn Alperovich Based on “The Art of Multiprocessor Programming” by Herlihy & Shavit, chapter 8.
Hash Tables © Rick Mercer.  Outline  Discuss what a hash method does  translates a string key into an integer  Discuss a few strategies for implementing.
1 CSCD 326 Data Structures I Hashing. 2 Hashing Background Goal: provide a constant time complexity method of searching for stored data The best traditional.
Concurrent Hashing and Natural Parallelism Chapter 13 in The Art of Multiprocessor Programming Instructor: Erez Petrank Presented by Tomer Hermelin.
Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Concurrent Skip Lists.
An algorithm of Lock-free extensible hash table Yi Feng.
CS 261 – Data Structures Hash Tables Part II: Using Buckets.
Chapter 5 Record Storage and Primary File Organizations
(c) University of Washington20c-1 CSC 143 Binary Search Trees.
Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Concurrent Skip Lists.
Building Java Programs Generics, hashing reading: 18.1.
Lecture 9 : Concurrent Data Structures Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit.
Hash-Based Indexes Chapter 11
Hashing CENG 351.
Hashing and Natural Parallism
Introduction to Database Systems
Concurrent Hashing and Natural Parallelism
Hash-Based Indexes Chapter 10
CSE 373: Data Structures and Algorithms
CSE 373 Data Structures and Algorithms
CSE 373: Data Structures and Algorithms
Hash-Based Indexes Chapter 11
Database Systems (資料庫系統)
Hashing and Natural Parallism
CSC 143 Binary Search Trees.
Hash-Based Indexes Chapter 11
Chapter 11 Instructor: Xin Zhang
Presentation transcript:

Art of Multiprocessor Programming1 Concurrent Hashing Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Modified by Rajeev Alur for CIS640 University of Pennsylvania

Art of Multiprocessor Programming22 Linked Lists Ways to make highly-concurrent list- based Sets: –Fine-grained locks –Optimistic synchronization –Lazy synchronization –Lock-free synchronization What’s missing?

Art of Multiprocessor Programming3 Linear-Time Set Methods Problem is –add(), remove(), contains() –Take time linear in set size We want –Constant-time methods –(at least, on average)

Art of Multiprocessor Programming44 Hashing Hash function –h: items  integers Uniformly distributed –Different item most likely have different hash values Java hashCode() method

Art of Multiprocessor Programming55 Sequential Hash Map h(k) = k mod 4 2 Items buckets

Art of Multiprocessor Programming6 Add an Item h(k) = k mod 4 3 Items

Art of Multiprocessor Programming77 Add Another: Collision h(k) = k mod 4 4 Items

Art of Multiprocessor Programming88 More Collisions h(k) = k mod 4 5 Items

Art of Multiprocessor Programming99 More Collisions h(k) = k mod 4 5 Items Problem: buckets getting too long

Art of Multiprocessor Programming10 Resizing Grow the array 5 Items h(k) = k mod 8

Art of Multiprocessor Programming11 5 Items Resizing h(k) = k mod 8 Adjust hash function

Art of Multiprocessor Programming12 Resizing h(4) = 0 mod h(k) = k mod 8

Art of Multiprocessor Programming13 Resizing h(k) = k mod 8 h(4) = 4 mod 8

Art of Multiprocessor Programming14 Resizing h(k) = k mod 8 h(15) = 7 mod 8

Art of Multiprocessor Programming15 Resizing h(k) = k mod 8 h(15) = 7 mod 8 157

Art of Multiprocessor Programming16 Hash Sets Implement a Set object –Collection of items, no duplicates –add(), remove(), contains() methods –You know the drill …

Art of Multiprocessor Programming17 Simple Hash Set public class SimpleHashSet { protected LockFreeList[] table; public SimpleHashSet(int capacity) { table = new LockFreeList[capacity]; for (int i = 0; i < capacity; i++) table[i] = new LockFreeList(); } …

Art of Multiprocessor Programming18 Fields public class SimpleHashSet { protected LockFreeList[] table; public SimpleHashSet(int capacity) { table = new LockFreeList[capacity]; for (int i = 0; i < capacity; i++) table[i] = new LockFreeList(); } … Array of lock-free lists

Art of Multiprocessor Programming19 Constructor public class SimpleHashSet { protected LockFreeList[] table; public SimpleHashSet(int capacity) { table = new LockFreeList[capacity]; for (int i = 0; i < capacity; i++) table[i] = new LockFreeList(); } … Initial size

Art of Multiprocessor Programming20 Constructor public class SimpleHashSet { protected LockFreeList[] table; public SimpleHashSet(int capacity) { table = new LockFreeList[capacity]; for (int i = 0; i < capacity; i++) table[i] = new LockFreeList(); } … Allocate memory

Art of Multiprocessor Programming21 Constructor public class SimpleHashSet { protected LockFreeList[] table; public SimpleHashSet(int capacity) { table = new LockFreeList[capacity]; for (int i = 0; i < capacity; i++) table[i] = new LockFreeList(); } … Initialization

Art of Multiprocessor Programming22 Add Method public boolean add(Object key) { int hash = key.hashCode() % table.length; return table[hash].add(key); }

Art of Multiprocessor Programming23 Add Method public boolean add(Object key) { int hash = key.hashCode() % table.length; return table[hash].add(key); } Use object hash code to pick a bucket

Art of Multiprocessor Programming24 Add Method public boolean add(Object key) { int hash = key.hashCode() % table.length; return table[hash].add(key); } Call bucket’s add() method

Art of Multiprocessor Programming25 No Brainer? We just saw a –Simple –Lock-free –Concurrent hash-based set implementation What’s not to like?

Art of Multiprocessor Programming26 No Brainer? We just saw a –Simple –Lock-free –Concurrent hash-based set implementation What’s not to like? We don’t know how to resize …

Art of Multiprocessor Programming27 Is Resizing Necessary? Constant-time method calls require –Constant-length buckets –Table size proportional to set size –As set grows, must be able to resize

Art of Multiprocessor Programming28 Set Method Mix Typical load –90% contains() –9% add () –1% remove() Growing is important Shrinking not so much

Art of Multiprocessor Programming29 When to Resize? Many reasonable policies. Here’s one. Pick a threshold on num of items in a bucket Global threshold –When ≥ ¼ buckets exceed this value Bucket threshold –When any bucket exceeds this value

Art of Multiprocessor Programming30 Coarse-Grained Locking Good parts –Simple –Hard to mess up Bad parts –Sequential bottleneck

Art of Multiprocessor Programming31 Fine-grained Locking Each lock associated with one bucket

Art of Multiprocessor Programming32 Resize This Make sure table reference didn’t change between resize decision and lock acquisition Acquire locks in ascending order

Art of Multiprocessor Programming33 Resize This Allocate new super-sized table

Art of Multiprocessor Programming34 Resize This

Art of Multiprocessor Programming35 Resize This

Art of Multiprocessor Programming36 Resize This Striped Locks: each lock now associated with two buckets

Art of Multiprocessor Programming37 Observations We grow the table, but not locks –Resizing lock array is tricky … We use sequential lists –Not LockFreeList lists –If we’re locking anyway, why pay?

Art of Multiprocessor Programming38 Fine-Grained Hash Set public class FGHashSet { protected RangeLock[] lock; protected List[] table; public FGHashSet(int capacity) { table = new List[capacity]; lock = new RangeLock[capacity]; for (int i = 0; i < capacity; i++) { lock[i] = new RangeLock(); table[i] = new LinkedList(); }} …

Art of Multiprocessor Programming39 Fine-Grained Hash Set public class FGHashSet { protected RangeLock[] lock; protected List[] table; public FGHashSet(int capacity) { table = new List[capacity]; lock = new RangeLock[capacity]; for (int i = 0; i < capacity; i++) { lock[i] = new RangeLock(); table[i] = new LinkedList(); }} … Array of locks

Art of Multiprocessor Programming40 Fine-Grained Hash Set public class FGHashSet { protected RangeLock[] lock; protected List[] table; public FGHashSet(int capacity) { table = new List[capacity]; lock = new RangeLock[capacity]; for (int i = 0; i < capacity; i++) { lock[i] = new RangeLock(); table[i] = new LinkedList(); }} … Array of buckets

Art of Multiprocessor Programming41 Fine-Grained Hash Set public class FGHashSet { protected RangeLock[] lock; protected List[] table; public FGHashSet(int capacity) { table = new List[capacity]; lock = new RangeLock[capacity]; for (int i = 0; i < capacity; i++) { lock[i] = new RangeLock(); table[i] = new LinkedList(); }} … Initially same number of locks and buckets

Art of Multiprocessor Programming42 The add() method public boolean add(Object key) { int keyHash = key.hashCode() % lock.length; synchronized (lock[keyHash]) { int tabHash = key.hashCode() % table.length; return table[tabHash].add(key); }

Art of Multiprocessor Programming43 Fine-Grained Locking public boolean add(Object key) { int keyHash = key.hashCode() % lock.length; synchronized (lock[keyHash]) { int tabHash = key.hashCode() % table.length; return table[tabHash].add(key); } Which lock?

Art of Multiprocessor Programming44 The add() method public boolean add(Object key) { int keyHash = key.hashCode() % lock.length; synchronized (lock[keyHash]) { int tabHash = key.hashCode() % table.length; return table[tabHash].add(key); } Acquire the lock

Art of Multiprocessor Programming45 Fine-Grained Locking public boolean add(Object key) { int keyHash = key.hashCode() % lock.length; synchronized (lock[keyHash]) { int tabHash = key.hashCode() % table.length; return table[tabHash].add(key); } Which bucket?

Art of Multiprocessor Programming46 The add() method public boolean add(Object key) { int keyHash = key.hashCode() % lock.length; synchronized (lock[keyHash]) { int tabHash = key.hashCode() % table.length; return table[tabHash].add(key); } Call that bucket’s add() method

Art of Multiprocessor Programming47 Fine-Grained Locking private void resize(int depth, List[] oldTab) { synchronized (lock[depth]) { if (oldTab == this.table){ int next = depth + 1; if (next < lock.length) resize (next, oldTab); else sequentialResize(); }}} resize() calls resize(0,this.table)

Art of Multiprocessor Programming48 Fine-Grained Locking private void resize(int depth, List[] oldTab) { synchronized (lock[depth]) { if (oldTab == this.table){ int next = depth + 1; if (next < lock.length) resize (next, oldTab); else sequentialResize(); }}} Acquire next lock

Art of Multiprocessor Programming49 Fine-Grained Locking private void resize(int depth, List[] oldTab) { synchronized (lock[depth]) { if (oldTab == this.table) { int next = depth + 1; if (next < lock.length) resize (next, oldTab); else sequentialResize(); }}} Check that no one else has resized

Art of Multiprocessor Programming50 Fine-Grained Locking private void resize(int depth, List[] oldTab) { synchronized (lock[depth]) { if (oldTab == this.table){ int next = depth + 1; if (next < lock.length) resize (next, oldTab); else sequentialResize(); }}} Recursively acquire next lock

Art of Multiprocessor Programming51 Fine-Grained Locking private void resize(int depth, List[] oldTab) { synchronized (lock[depth]) { if (oldTab == this.table){ int next = depth + 1; if (next < lock.length) resize (next, oldTab); else sequentialResize(); }}} Locks acquired, do the work

Art of Multiprocessor Programming52 Fine-Grained Locks We can resize the table But not the locks Debatable whether method calls are constant-time in presence of contention …

Art of Multiprocessor Programming53 Insight The contains() method –Does not modify any fields –Why should concurrent contains() calls conflict?

Art of Multiprocessor Programming54 Read/Write Locks public interface ReadWriteLock { Lock readLock(); Lock writeLock(); }

Art of Multiprocessor Programming55 Read/Write Locks public interface ReadWriteLock { Lock readLock(); Lock writeLock(); } Returns associated read lock

Art of Multiprocessor Programming56 Read/Write Locks public interface ReadWriteLock { Lock readLock(); Lock writeLock(); } Returns associated read lock Returns associated write lock

Art of Multiprocessor Programming57 Lock Safety Properties No thread may acquire the write lock –while any thread holds the write lock –or the read lock. No thread may acquire the read lock – while any thread holds the write lock. Concurrent read locks OK

Art of Multiprocessor Programming58 Read/Write Lock Satisfies safety properties –If readers > 0 then writer == false –If writer = true then readers == 0 Liveness? –Lots of readers … –Writers locked out?

Art of Multiprocessor Programming59 FIFO R/W Lock As soon as a writer requests a lock No more readers accepted Current readers “drain” from lock Writer gets in

Art of Multiprocessor Programming60 The Story So Far Resizing is the hard part Fine-grained locks –Striped locks cover a range (not resized) Read/Write locks –FIFO property needed

Art of Multiprocessor Programming61 Stop The World Resizing Resizing stops all concurrent operations What about an incremental resize? Must avoid locking the table A lock-free table + incremental resizing?

Art of Multiprocessor Programming62 Lock-Free Resizing Problem

Art of Multiprocessor Programming63 Lock-Free Resizing Problem Need to extend table

Art of Multiprocessor Programming Lock-Free Resizing Problem Need to extend table

Art of Multiprocessor Programming65 Lock-Free Resizing Problem

Art of Multiprocessor Programming66 Lock-Free Resizing Problem to remove and then add even a single item single location CAS not enough We need a new idea…

Art of Multiprocessor Programming67 Don’t move the items Move the buckets instead Keep all items in a single lock-free list Buckets become “shortcut pointers” into the list

Art of Multiprocessor Programming68 Recursive Split Ordering

Art of Multiprocessor Programming69 Recursive Split Ordering 0 1/

Art of Multiprocessor Programming70 Recursive Split Ordering 0 1/2 1 1/43/

Art of Multiprocessor Programming71 Recursive Split Ordering 0 1/2 1 1/43/ List entries sorted in order that allows recursive splitting. How?

Art of Multiprocessor Programming72 Recursive Split Ordering

Art of Multiprocessor Programming73 Recursive Split Ordering LSB 0 LSB 1 LSB = Least significant Bit

Art of Multiprocessor Programming74 Recursive Split Ordering LSB 00LSB 10LSB 01LSB 11

Art of Multiprocessor Programming75 Split-Order If the table size is 2 i, –Bucket b contains keys k k = b (mod 2 i ) –bucket index consists of key's i LSBs

Art of Multiprocessor Programming76 When Table Splits Some keys stay –b = k mod(2 i+1 ) Some move –b+2 i = k mod(2 i+1 ) Determined by (i+1) st bit –Counting backwards Key must be accessible from both –Keys that will move must come later

Art of Multiprocessor Programming77 A Bit of Magic Real keys:

Art of Multiprocessor Programming78 A Bit of Magic Real keys: Split-order: Real key 1 is in the 4 th location

Art of Multiprocessor Programming79 A Bit of Magic Real keys: Split-order: Real key 1 is in 4 th location

Art of Multiprocessor Programming80 A Bit of Magic Real keys: Split-order:

Art of Multiprocessor Programming81 A Bit of Magic Real keys: Split-order: Just reverse the order of the key bits

Art of Multiprocessor Programming82 Split Ordered Hashing Order according to reversed bits

Art of Multiprocessor Programming83 Parent Always Provides a Short Cut search

Art of Multiprocessor Programming84 Sentinel Nodes Problem: how to remove a node pointed by 2 sources using CAS

Art of Multiprocessor Programming85 Sentinel Nodes Solution: use a Sentinel node for each bucket 0 1

Art of Multiprocessor Programming86 Sentinel vs Regular Keys Want sentinel key for i ordered –before all keys that hash to bucket i –after all keys that hash to bucket (i-1)

Art of Multiprocessor Programming87 Splitting a Bucket We can now split a bucket In a lock-free manner Using two CAS() calls...

Art of Multiprocessor Programming88 Initialization of Buckets

Art of Multiprocessor Programming89 Initialization of Buckets Need to initialize bucket 3 to split bucket 1 3 in list but not connected to bucket yet Now 3 points to sentinel – bucket has been split

Art of Multiprocessor Programming90 Adding = 2 mod 4 2 Must initialize bucket 2 Then can add 10

Art of Multiprocessor Programming91 Recursive Initialization = 3 mod 4 To add 7 to the list 3 Must initialize bucket 3Must initialize bucket 1 = 1 mod 2 1 Could be log n depth But EXPECTED depth is constant

Art of Multiprocessor Programming92 Lock-Free List int makeRegularKey(int key) { return reverse(key | 0x ); } int makeSentinelKey(int key) { return reverse(key); }

Art of Multiprocessor Programming93 Lock-Free List int makeRegularKey(int key) { return reverse(key | 0x ); } int makeSentinelKey(int key) { return reverse(key); } Regular key: set high-order bit to 1 and reverse

Art of Multiprocessor Programming94 Lock-Free List int makeRegularKey(int key) { return reverse(key | 0x ); } int makeSentinelKey(int key) { return reverse(key); } Sentinel key: simply reverse (high-order bit is 0)

Art of Multiprocessor Programming95 Main List Lock-Free List from earlier class With some minor variations

Art of Multiprocessor Programming96 Lock-Free List public class LockFreeList { public boolean add(Object object, int key) {...} public boolean remove(int k) {...} public boolean contains(int k) {...} public LockFreeList(LockFreeList parent, int key) {...}; }

Art of Multiprocessor Programming97 Lock-Free List public class LockFreeList { public boolean add(Object object, int key) {...} public boolean remove(int k) {...} public boolean contains(int k) {...} public LockFreeList(LockFreeList parent, int key) {...}; } Change: add takes key argument

Art of Multiprocessor Programming98 Lock-Free List public class LockFreeList { public boolean add(Object object, int key) {...} public boolean remove(int k) {...} public boolean contains(int k) {...} public LockFreeList(LockFreeList parent, int key) {...}; } Inserts sentinel with key if not already present …

Art of Multiprocessor Programming99 Lock-Free List public class LockFreeList { public boolean add(Object object, int key) {...} public boolean remove(int k) {...} public boolean contains(int k) {...} public LockFreeList(LockFreeList parent, int key) {...}; } … returns new list starting with sentinel (shares with parent)

Art of Multiprocessor Programming100 Split-Ordered Set: Fields public class SOSet { protected LockFreeList[] table; protected AtomicInteger tableSize; protected AtomicInteger setSize; public SOSet(int capacity) { table = new LockFreeList[capacity]; table[0] = new LockFreeList(); tableSize = new AtomicInteger(2); setSize = new AtomicInteger(0); }

Art of Multiprocessor Programming101 Fields public class SOSet { protected LockFreeList[] table; protected AtomicInteger tableSize; protected AtomicInteger setSize; public SOSet(int capacity) { table = new LockFreeList[capacity]; table[0] = new LockFreeList(); tableSize = new AtomicInteger(2); setSize = new AtomicInteger(0); } For simplicity treat table as big array …

Art of Multiprocessor Programming102 Fields public class SOSet { protected LockFreeList[] table; protected AtomicInteger tableSize; protected AtomicInteger setSize; public SOSet(int capacity) { table = new LockFreeList[capacity]; table[0] = new LockFreeList(); tableSize = new AtomicInteger(2); setSize = new AtomicInteger(0); } In practice, want something that grows dynamically

Art of Multiprocessor Programming103 Fields public class SOSet { protected LockFreeList[] table; protected AtomicInteger tableSize; protected AtomicInteger setSize; public SOSet(int capacity) { table = new LockFreeList[capacity]; table[0] = new LockFreeList(); tableSize = new AtomicInteger(2); setSize = new AtomicInteger(0); } How much of table array are we actually using?

Art of Multiprocessor Programming104 Fields public class SOSet { protected LockFreeList[] table; protected AtomicInteger tableSize; protected AtomicInteger setSize; public SOSet(int capacity) { table = new LockFreeList[capacity]; table[0] = new LockFreeList(); tableSize = new AtomicInteger(2); setSize = new AtomicInteger(0); } Track set size so we know when to resize

Art of Multiprocessor Programming105 Fields public class SOSet { protected LockFreeList[] table; protected AtomicInteger tableSize; protected AtomicInteger setSize; public SOSet(int capacity) { table = new LockFreeList[capacity]; table[0] = new LockFreeList(); tableSize = new AtomicInteger(1); setSize = new AtomicInteger(0); } Initially use 1 bucket and size is zero

Art of Multiprocessor Programming106 Add() Method public boolean add(Object object) { int hash = object.hashCode(); int bucket = hash % tableSize.get(); int key = makeRegularKey(hash); LockFreeList list = getBucketList(bucket); if (!list.add(object, key)) return false; resizeCheck(); return true; }

Art of Multiprocessor Programming107 Add() Method public boolean add(Object object) { int hash = object.hashCode(); int bucket = hash % tableSize.get(); int key = makeRegularKey(hash); LockFreeList list = getBucketList(bucket); if (!list.add(object, key)) return false; resizeCheck(); return true; } Pick a bucket

Art of Multiprocessor Programming108 Add() Method public boolean add(Object object) { int hash = object.hashCode(); int bucket = hash % tableSize.get(); int key = makeRegularKey(hash); LockFreeList list = getBucketList(bucket); if (!list.add(object, key)) return false; resizeCheck(); return true; } Non-Sentinel split-ordered key

Art of Multiprocessor Programming109 Add() Method public boolean add(Object object) { int hash = object.hashCode(); int bucket = hash % tableSize.get(); int key = makeRegularKey(hash); LockFreeList list = getBucketList(bucket); if (!list.add(object, key)) return false; resizeCheck(); return true; } Get pointer to bucket’s sentinel, initializing if necessary

Art of Multiprocessor Programming110 Add() Method public boolean add(Object object) { int hash = object.hashCode(); int bucket = hash % tableSize.get(); int key = makeRegularKey(hash); LockFreeList list = getBucketList(bucket); if (!list.add(object, key)) return false; resizeCheck(); return true; } Call bucket’s add() method with reversed key

Art of Multiprocessor Programming111 Add() Method public boolean add(Object object) { int hash = object.hashCode(); int bucket = hash % tableSize.get(); int key = makeRegularKey(hash); LockFreeList list = getBucketList(bucket); if (!list.add(object, key)) return false; resizeCheck(); return true; } No change? We’re done.

Art of Multiprocessor Programming112 Add() Method public boolean add(Object object) { int hash = object.hashCode(); int bucket = hash % tableSize.get(); int key = makeRegularKey(hash); LockFreeList list = getBucketList(bucket); if (!list.add(object, key)) return false; resizeCheck(); return true; } Time to resize?

Art of Multiprocessor Programming113 Resize Divide set size by total number of buckets If quotient exceeds threshold –Double tableSize field –Up to fixed limit

Art of Multiprocessor Programming114 Initialize Buckets Buckets originally null If you find one, initialize it Go to bucket’s parent –Earlier nearby bucket –Recursively initialize if necessary Constant expected work

Art of Multiprocessor Programming115 Recall: Recursive Initialization = 3 mod 4 To add 7 to the list 3 Must initialize bucket 3Must initialize bucket 1 = 1 mod 2 1 Could be log n depth But EXPECTED depth is constant

Art of Multiprocessor Programming116 Initialize Bucket void initializeBucket(int bucket) { int parent = getParent(bucket); if (table[parent] == null) initializeBucket(parent); int key = makeSentinelKey(bucket); LockFreeList list = new LockFreeList(table[parent], key); }

Art of Multiprocessor Programming117 Initialize Bucket void initializeBucket(int bucket) { int parent = getParent(bucket); if (table[parent] == null) initializeBucket(parent); int key = makeSentinelKey(bucket); LockFreeList list = new LockFreeList(table[parent], key); } Find parent, recursively initialize if needed

Art of Multiprocessor Programming118 Initialize Bucket void initializeBucket(int bucket) { int parent = getParent(bucket); if (table[parent] == null) initializeBucket(parent); int key = makeSentinelKey(bucket); LockFreeList list = new LockFreeList(table[parent], key); } Prepare key for new sentinel

Art of Multiprocessor Programming119 Initialize Bucket void initializeBucket(int bucket) { int parent = getParent(bucket); if (table[parent] == null) initializeBucket(parent); int key = makeSentinelKey(bucket); LockFreeList list = new LockFreeList(table[parent], key); } Insert sentinel if not present, and get back reference to rest of list

Art of Multiprocessor Programming120 Correctness Linearizable concurrent set implementation Theorem: O(1) expected time –No more than O(1) items expected between two dummy nodes on average –Lazy initialization causes at most O(1) expected recursion depth in initializeBucket()

Art of Multiprocessor Programming121 Summary Concurrent resizing is tricky Lock-based –Fine-grained –Read/write locks –Optimistic Lock-free –Builds on lock-free list