K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.

Slides:



Advertisements
Similar presentations
Journées Instrumentation du GDR Nucléon 8-9 Avril 2008, CEA Saclay Polarized Positrons at the Jefferson Laboratory (i) Physics motivations (ii) Principe.
Advertisements

POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.
The E166 Experiment K. Peter Schüler e+ source options for the ILC undulator source scheme for ILC E166 – proof-of-principle demonstration of the undulator.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) The International Polarized Positron Production Collaboration K.T. McDonald, J.C.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
Positron Asymmetry and Polarization from the E166 September 2005 run Gideon Alexander, Erez Reinherz-Aronis.
K.T. McDonald DoE Review Aug. 10, E-166 Experiment E-166 is a demonstration of undulator-based polarized positron production for linear colliders.
EPAC June 2003 The EPAC June 2003 Questions 1. Clarify the Motivation for the Proposal. 2. How to ensure the e+ polarimeter works right away? 3. What is.
5 th Rencontres du Vietnam - Aug. 7, 2004 Polarized Positrons…E166 A.W.Weidemann 1 Introduction (What, who) Motivation (Why) Experiment and Polarimetry.
K. LaihemPrinceton meeting Princeton meeting Status Report Simulation studies E166 experiment Karim Laihem.
E166 Collaboration J.C. Sheppard SLAC, October, 2003 E166 Background Test Simulations: Overview-what do we need J. C. Sheppard.
Stanford – Mar , 2005 LCWS-2005 Norbert Meyners Upstream Polarimetry with 4-Magnet Chicane 1 Introduction & Overview O Compton polarimetry basics.
E166 “Polarized Positrons for Future Linear Colliders” John C. Sheppard E166 Co-spokesman SLAC: August 31, 2004.
K.T. McDonald DoE Review July 29, E-166 Experiment E-166 is a demonstration of undulator-based polarized positron production for linear colliders.
Undulator-Based Production of Polarized Positrons Status Report on E-166 Undulator-Based Production of Polarized Positrons K.T. McDonald Princeton University.
E166 Collaboration About 45+2 members from 16+1 institutions from all three regions (Asia, Europe, the Americas, and Daresbury) About 45+2 members from.
Left: The polarization of the undulator radiation as a function of energy. Right: Calculated positron longitudinal polarization as a function of energy.
NLC - The Next Linear Collider Project Sheppard/Pitthan June 26, 2015 Towards an Undulator Based NLC Positron Source Towards an Undulator Based NLC Positron.
Undulator-Based Production of Polarized Positrons An experiment in the 50 GeV Beam in the SLAC FFTB E-166 Undulator-Based Production of Polarized Positrons.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) K.T. McDonald, J.C. Sheppard, Co-Spokespersons SLAC Experimental Program Advisory.
E166 Collaboration About 45+2 members from 16+1 institutions from all three regions (Asia, Europe, the Americas, and Daresbury) About 45+2 members from.
EPAC June 2003 Undulator-Based Production of Polarized Positrons A proposal for the 50 GeV Beam in the FFTB E-166 Undulator-Based Production of Polarized.
NLC - The Next Linear Collider Project Sheppard /Pitthan November 7, 2002 Positron Production and Test in the FFTB of Undulator-Based Concepts Positron.
NLC - The Next Linear Collider Project Sheppard/Pitthan July 14, 2015 POWER Meeting June 8=9,2002 Durham, England POWER Meeting June 8=9,2002 Durham, England.
20 March 2005Ken Moffeit LCWS1 Highlights from the MDI workshop Spin Rotation System for 2 IR’s Downstream polarimetry Ken Moffeit.
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
AESOP: Accurate Electron Spin Optical Polarimeter Marcy L. Stutzman, Matt Poelker; Jefferson Lab Timothy J. Gay; University of Nebraska.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Proton polarization measurements in π° photo- production --on behalf of the Jefferson Lab Hall C GEp-III and GEp-2 γ collaboration 2010 Annual Fall Meeting.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
Simulation of Positron Production and Capturing. W. Gai, W. Liu, H. Wang and K. Kim Working with SLAC & DESY.
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
WG3a Sources Summary Jim Clarke on behalf of John Sheppard, Masao Kuriki, Philippe Piot and all the contributors to WG3a.
PHENIX Local Polarimeter PSTP 2007 at BNL September 11, 2007 Yuji Goto (RIKEN/RBRC)
EUROTeV WP4 Report Polarised Positron Source Jim Clarke, on behalf of the WP4 team DESY Zeuthen STFC (Daresbury and RAL) University of Durham University.
1 Overview of Polarimetry Outline of Talk Polarized Physics Machine-Detector Interface Issues Upstream Polarimeter Downstream Polarimeter Ken Moffeit,
Oct. 6, Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia.
Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) The International Polarized Positron Production Collaboration K.T. McDonald, J.C.
Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)
LCWS2005 at Stanford 18-22/Mar/2004 Tsunehiko OMORI (KEK) e + Polarized e + Generation & Measurement at KEK Laser-based polarized e +
Laser Based Polarized e + e + Source for ILC 8th ACFA Daegu 11-14/Jul/2005 Tsunehiko OMORI (KEK)
Polarimetry Report Sabine Riemann on behalf of the DESY/HUB group January 24, 2008 EUROTeV Annual Meeting, Frascati.
E166: Polarized Positrons & Polarimetry K. Peter Schüler ILC: - why polarized positrons - e+ source options - undulator source scheme E166 - proof-of-principle.
Validation of EM Part of Geant4
Polarized Positrons at the Jefferson Laboratory Idaho State University, Idaho Accelerator Center, Jefferson Lab, LPC Clermont-Ferrand, LPSC Grenoble, Old.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
K. Floettmann KEK, Nov , 2004 GAMMA BASED POSITRON SOURCE OPTIONS FOR ILC Klaus Floettmann DESY.
Update on ILC Production and Capturing Studies Wei Gai, Wanming Liu and Kwang-Je Kim ILC e+ Collaboration Meeting IHEP Beijing Jan 31 – Feb 2, 2007.
WG3a Sources Update Jim Clarke on behalf of WG3a GDE Meeting, Frascati, December 2005.
Taikan SUEHARA et al., LCWS2007 & DESY, 2007/06/01 R&D Status of ATF2 IP Beam Size Monitor (Shintake Monitor) Taikan SUEHARA, H.Yoda, M.Oroku,
E + Polarized e + generation at KEK-ATF Tsunehiko OMORI (KEK) POSIPOL 27/Apr/2006.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
Design and Simulations of the Source of Polarized Slow Positrons at ELI-NP Nikolay Djourelov ELI-NP, IFIN-HH, 30 Reactorului Str, MG-6 Bucharest-Magurele,
LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 1 Polarimeter Studies for TESLA O General Considerations O.
Dollan, Laihem, Lohse, Schälicke, Stahl 1 Monte Carlo based studies of polarized positrons source for the International Linear Collider (ILC)
CsI(Tl) Calorimeter and status of the E166 experiment E166 experiment CsI ( Tl) calorimeter construction. Test beam results vs. Geant4 simulation Schedules.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim ILC GDE Meeting DESY May 30 – Jun2, 2007 Work performed for.
1 Positron Source Configuration Masao KURIKI ILC AG meeting at KEK, 2006 Jan. Positron Source Configuration KURIKI Masao and John Sheppard  BCD Description.
Some Aspects on Compton Scheme Positron Source Study Wanming Liu ANL Tsunehiko OMORI KEK.
Test of Hybrid Target at KEKB LINAC
Polarized Electrons for Polarized Positrons
A.P. Potylitsyn, I.S. Tropin Tomsk Polytechnic University,
THE STATUS OF POSITRON SOURSE DEVELOPMENT AT CORNELL-II
Progress with Spin Tracking in GEANT4
Status Report on E-166 Undulator-Based Production of Polarized Positrons K.T. McDonald Princeton University EPAC Meeting SLAC, November 15, 2003.
E166 - LEPOL - Low Energy Positron Polarimetry for the ILC
Polarized Positrons at Jefferson Lab
ILC Baseline Design: Physics with Polarized Positrons
Presentation transcript:

K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on behalf of the E-166 collaboration

K. LaihemE166 collaboration The goal of the E-166 experiment at SLAC The ATF Compton experiment at KEK Photon transmission polarimetry The helical undulator The E-166 setup Data taking First results on photon and positron asymmetries Outline

K. LaihemE166 collaboration γ e+ e- Undulator Target D1 D2 D3 Gamma Diagnostic Positron Diagnostic e- Dump e- Dump 46.6 GeV 10 MeV 1 m Energy spectrum The goal of the E-166 experiment at SLAC Experimental Demonstration for polarized e + production Final focus test beam (FFTB) at SLAC with 46.6 GeV electrons 1 m long helical undulator produces circular polarized photons Undulator radiation 0-10 MeV (Balakin & Mikhailichenko 1979) Conversion of photons to positrons in 0.2 X 0 W-target Measurement of polarization of photons and positrons by Photon transmission method

K. LaihemE166 collaboration Compton based Pol. e + Generation E = 36±8 MeV 10 4 /bunch E max = 56MeV Pol.  -ray generation: M. Fukuda et al. PRL 91, (2003)

K. LaihemE166 collaboration e + polarization (e + run ) e - spin in Iron e + beam spin non A(R)= ± 0.25% A(L)= ± 0.27% A(0)= ± 0.25% T. Omori et al., arXiv:hep-ex/ Phys. Rev. Lett. accepted ATF-Compton

K. LaihemE166 collaboration Summary of e + Run and e - Run e + Run e - Run abs. A= 0.90 ± 0.18% abs. A=0.89 ± 0.19% Pe + = 73 ± 15(sta) ± 19(sys) Pe - = 72 ± 15(sta) ± 19(sys) T. Omori et al., arXiv:hep-ex/ PRL accepted ATF-Compton

K. LaihemE166 collaboration E166 setup in the FFTB Positron Table Gamma Table TOP VIEW Gamma Analyzing magnet e+ Analyzing magnet helical undulator collimators Positron Table Gamma Table ~30 m Undulator SIDE VIEW Dump magnets e- beam Polarized photons productionphotons collimationPositrons diagphotons diag

K. LaihemE166 collaboration y z x e- beam Undulator photons I1I1 I2I2 I1I1 I2I2 I 1 = - I 2 Helical winding where I 1 and I 2 are in opposite directions. Helical winding: z component of the induced magnetic field cancels remaining magnetic field describes a helical profile The helical undulator

K. LaihemE166 collaboration Undulator photon “Energy and Polarization” Undulator Photon energy spectrumUndulator Photon degree of polarization 1 st Harmonic 2 nd Harmonic

K. LaihemE166 collaboration The Positron production target e+ Energy distribution (in and out the 0.5 X0 W target) Positron Polarization profile created by the undulator photons (creation point) Polarized γ beam From the Helical Undulator e+ e- 0.5 X0 W (Tungsten) -> E166 X0 W (Tungsten) = 3.5 mm Polarization transfer in e+ e- pair creation e+ e-

K. LaihemE166 collaboration

K. LaihemE166 collaboration Positron and Gamma table at the FFTB (SLAC)

K. LaihemE166 collaboration Photon transmission polarimetry Transmission

K. LaihemE166 collaboration Positron Analyzing Power Positron Energy E e + (MeV) Positron Polarisation P e + (%) Positron Asymmetry δ (%) Analyzing Power A e + (%) Expected asymmetries and analyzing power versus positron energy G3 simulation based on the experimental setup of the proposal Most challenging task for E166 was to measure asymmetries ≤1% in the CsI - Calorimeter V. Gharibyan

K. LaihemE166 collaboration What we have achieved in E166 ? (e+ and photon asymmetry) Expected asymmetries [%] (Geant3 Simulation) Measured asymmetries [%] Aerogel AG2 W-Si GCAL Aerogel AG2 W-Si GCAL Peter Schuler, Vahagn Gharibyan DESY William Bugg. University of Tennessee Positron Asymmetry Photon Asymmetry I s = 140 A (1.03 ± 0.08) %

K. LaihemE166 collaboration We still need “A γ “ !!!! The analyzing power Okay !!!! The asymmetry Magnetization of the The Iron core of the analyzing magnet What about the e+ degree of polarization? Transmission

K. LaihemE166 collaboration Field map Measurement at SLAC. Figure 5: By with respect X position and Z position. MERMAID field map calculation. E166 spectrometer magnetic field study

K. LaihemE166 collaboration E166_Geant4_Simulation Figure 1: Synoptic scheme of the E166 e+/e- transportation system.. The present study concerns the region between the target up to the Point A, B and C (entrance of the spectrometer, exit of the spectrometer and reconversion target respectively).

K. LaihemE166 collaboration E166_G4_SIM Reconversion target C Point B Point A Spectrometer Current 180 A as an example

K. LaihemE166 collaboration Summary table of the most relevant parameter for positrons at the reconversion target. Spectrometer current. I S [A] Lens current I L [A] Positron Energy [MeV] , , , , % 68% 61% 53% 44% EGS simulation John Sheppard Qualitative study Covered range.

K. LaihemE166 collaboration Polarized γ beam From the Helical Undulator e+e+ e+e+ e+e+ e-e- e-e- e-e- 0.5 X0 W (Tungsten) -> E166 X0 W (Tungsten) = 3.5 mm TARGET Gammas: GammaConversion ComptonScattering PhotoElectricEffect Electrons and Positrons: MultipleScattering Ionisation Bremsstrahlung Diagnostics (Polarimetry) Cross sections polarization dependent What is needed in Geant4 for polarized Positron/Electrons studies ? Polarization transfer to e-/e+ Polarization traking (depolarization effects ?) MAGNETIC FIELD: Compton Scattering Bhabha Scattering Moller Scattering Positron annihilation in Flight

K. LaihemE166 collaboration Summary and outlook E-166 had two excellent runs (June / September 2005). Asymmetries measured at 6 positron energies. The helical undulator fulfilled its task. The analysis asymmetries in the expected range It still takes some time to come up with a number for the photon and positron polarization More detailed Geant4 E-166 simulation work is in progress The analysis is ongoing….

K. LaihemE166 collaboration Thank you……

K. LaihemE166 collaboration Backup…

K. LaihemE166 collaboration Figure 26. Transmission up to the reconversion target in terms of Signal (or energy) defined by equation 7. Transmission up to the reconversion target (point C). Reconversion target C

K. LaihemE166 collaboration I S = 100 I L = 175 I S = 120 I L = 200 I S = 140 I L = 225 I S = 160 I L = 250 I S = 180 I L = 275 Current [A]

K. LaihemE166 collaboration Figure 33. Positron energy versus spectrometer current. Positron energy versus spectrometer current

K. LaihemE166 collaboration Figure 32 Setting point “Lens current versus spectrometer current”. Comparison between the E166_G4_SIM and September run. Setting points E166_G4_SIM versus E166 September run.

K. LaihemE166 collaboration Summary table of the most relevant parameter for positrons at the reconversion target. Spectrometer current. I S [A] Lens current I L [A] Positron Energy [MeV] Maximum Transmissio n (Statistics) [%] Maximum Transmission (Signal) [%] , , , ,

K. LaihemE166 collaboration Polarimeter setup 4 x 10 9 photons 4 x 10 5 e + 4 x 10 9 photons 4 x 10 7 photons ~ 500 TeV 5 x 10 4 phE 5x10 6 phE 1.6 x 10 3 photons of total ~ 6 GeV 2 x 10 7 e +

K. LaihemE166 collaboration E166 Helical undulator parameters vs. TESLA, NLC parameters

K. LaihemE166 collaboration

K. LaihemE166 collaboration

K. LaihemE166 collaboration Spectrometer current. I S [A] Lens current I L [A] Positron Energy [MeV] Maximum Transmission (Statistics) [%] Maximum Transmission (Signal) [%] , , , ,