EEC-484/584 Computer Networks Lecture 16 Wenbing Zhao

Slides:



Advertisements
Similar presentations
Chapter 3 Public Key Cryptography and Message authentication.
Advertisements

Spring 2000CS 4611 Security Outline Encryption Algorithms Authentication Protocols Message Integrity Protocols Key Distribution Firewalls.
Internet and Intranet Protocols and Applications Lecture 9a: Secure Sockets Layer (SSL) March, 2004 Arthur Goldberg Computer Science Department New York.
Digital Signatures and Hash Functions. Digital Signatures.
Authentication Cristian Solano. Cryptography is the science of using mathematics to encrypt and decrypt data. Public Key Cryptography –Problems with key.
1 Counter-measures Threat Monitoring Cryptography as a security tool Encryption Digital Signature Key distribution.
EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 6 Wenbing Zhao Department of Electrical and Computer Engineering.
EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 6 Wenbing Zhao Department of Electrical and Computer Engineering.
First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown and edited by Archana Chidanandan Cryptographic Tools.
Dr Alejandra Flores-Mosri Message Authentication Internet Management & Security 06 Learning outcomes At the end of this session, you should be able to:
BY MUKTADIUR RAHMAN MAY 06, 2010 INTERODUCTION TO CRYPTOGRAPHY.
EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 7 Wenbing Zhao Department of Electrical and Computer Engineering.
EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 5 Wenbing Zhao Department of Electrical and Computer Engineering.
Cryptographic Technologies
Kemal AkkayaWireless & Network Security 1 Department of Computer Science Southern Illinois University Carbondale CS 591 – Wireless & Network Security Lecture.
Henric Johnson1 Chapter3 Public-Key Cryptography and Message Authentication Henric Johnson Blekinge Institute of Technology, Sweden
EEC 688/788 Secure and Dependable Computing Lecture 4 Wenbing Zhao Department of Electrical and Computer Engineering Cleveland State University
EEC-484/584 Computer Networks Lecture 16 Wenbing Zhao
1 Lecture #10 Public Key Algorithms HAIT Summer 2005 Shimrit Tzur-David.
Spring 2003CS 4611 Security Outline Encryption Algorithms Authentication Protocols Message Integrity Protocols Key Distribution Firewalls.
EEC 688/788 Secure and Dependable Computing Lecture 6 Wenbing Zhao Department of Electrical and Computer Engineering Cleveland State University
EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 5 Wenbing Zhao Department of Electrical and Computer Engineering.
EEC-484/584 Computer Networks Lecture 18 Wenbing Zhao (Part of the slides are based on materials supplied by Prentice-Hall)
Fall 2010/Lecture 311 CS 426 (Fall 2010) Public Key Encryption and Digital Signatures.
Cryptography and Network Security Chapter 11 Fourth Edition by William Stallings Lecture slides by Lawrie Brown/Mod. & S. Kondakci.
Cryptography1 CPSC 3730 Cryptography Chapter 11, 12 Message Authentication and Hash Functions.
8: Network Security8-1 Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key: K r e.g., key is knowing substitution.
Network Security Chapter Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011.
CN8816: Network Security1 Confidentiality, Integrity & Authentication Confidentiality - Symmetric Key Encryption Data Integrity – MD-5, SHA and HMAC Public/Private.
1 Public-Key Cryptography and Message Authentication Ola Flygt Växjö University, Sweden
1 Cryptography Basics. 2 Cryptography Basic terminologies Symmetric key encryption Asymmetric key encryption Public Key Infrastructure Digital Certificates.
Tonga Institute of Higher Education Design and Analysis of Algorithms IT 254 Lecture 9: Cryptography.
EEC 688/788 Secure and Dependable Computing
Network Security. An Introduction to Cryptography The encryption model (for a symmetric-key cipher).
ECE453 – Introduction to Computer Networks Lecture 18 – Network Security (I)
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication Network Security (A Very Brief Introduction)
_______________________________________________________________________________________________________________ E-Commerce: Fundamentals and Applications1.
Cryptography, Authentication and Digital Signatures
Networks Management and Security Lecture 3.
Midterm Review Cryptography & Network Security
CS526: Information Security Prof. Sam Wagstaff September 16, 2003 Cryptography Basics.
4 th lecture.  Message to be encrypted: HELLO  Key: XMCKL H E L L O message 7 (H) 4 (E) 11 (L) 11 (L) 14 (O) message + 23 (X) 12 (M) 2 (C) 10 (K) 11.
Cryptography Wei Wu. Internet Threat Model Client Network Not trusted!!
Chapter 21 Public-Key Cryptography and Message Authentication.
Computer Security: Principles and Practice First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Chapter 2 – Cryptographic.
Advanced Database Course (ESED5204) Eng. Hanan Alyazji University of Palestine Software Engineering Department.
Network Security – Special Topic on Skype Security.
Digital Signatures, Message Digest and Authentication Week-9.
Lecture 2: Introduction to Cryptography
Section 3: Public Key, Digital Signature
Cryptography 1 Crypto Cryptography 2 Crypto  Cryptology  The art and science of making and breaking “secret codes”  Cryptography  making “secret.
Fall, Privacy&Security - Virginia Tech – Computer Science Click to edit Master title style Cryptographic Security Identity-Based Encryption.
Group 9 Chapter 8.3 – 8.6. Public Key Algorithms  Symmetric Key Algorithms face an inherent problem  Keys must be distributed to all parties but kept.
EEC 688/788 Secure and Dependable Computing Lecture 4 Wenbing Zhao Department of Electrical and Computer Engineering Cleveland State University
EEC 688/788 Secure and Dependable Computing Lecture 4 Wenbing Zhao Department of Electrical and Computer Engineering Cleveland State University
IT 221: Introduction to Information Security Principles Lecture 5: Message Authentications, Hash Functions and Hash/Mac Algorithms For Educational Purposes.
Cryptographic Security Aveek Chakraborty CS5204 – Operating Systems1.
Security. Security Needs Computers and data are used by the authorized persons Computers and their accessories, data, and information are available to.
Basics of Cryptography
Security Outline Encryption Algorithms Authentication Protocols
Public-Key Cryptography and Message Authentication
Chapter 8 Network Security.
EEC 688/788 Secure and Dependable Computing
EEC 688/788 Secure and Dependable Computing
Chapter 3 - Public-Key Cryptography & Authentication
EEC 688/788 Secure and Dependable Computing
Review of Cryptography: Symmetric and Asymmetric Crypto Advanced Network Security Peter Reiher August, 2014.
Presentation transcript:

EEC-484/584 Computer Networks Lecture 16 Wenbing Zhao

2 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Outline Reminder –Quiz#5 4/30 4-6pm –Final Revised Wiki Page due 5/5 midnight –Presentation: request for waiver will be handled FCFS Waiver request must have a revision summary and a url to your revised wiki page Cipher modes Public key algorithm Digital signature Message digest and secure hash functions Public key infrastructure

3 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Stream Cipher Mode To be insensitive to transmission error, an arbitrarily large sequence of output blocks, called the keystream, is treated like a one-time pad and XORed with the plaintext to get the ciphertext –It works by encrypting an IV, using a key to get an output block –The output block is then encrypted, using the key to get a second output block –This block is then encrypted to get a third block, and so on

4 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Stream Cipher Mode Encryption Decryption The keystream is independent of the data –It can be computed in advance –It is completely insensitive to transmission errors

5 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Stream Cipher Mode It is essential never to use the same (key, IV) pair twice with a stream cipher because doing so will generate the same keystream each time Using the same keystream twice exposes the ciphertext to a keystream reuse attack Stream cipher mode is also called output feedback mode

6 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Keystream Reuse Attack Plaintext block, P0, is encrypted with the keystream to get P0 XOR K0 Later, a second plaintext block, Q0, is encrypted with the same keystream to get Q0 XOR K0 An intruder who captures both ciphertext blocks can simply XOR them together to get P0 XOR Q0, which eliminates the key The intruder now has the XOR of the two plaintext blocks If one of them is known or can be guessed, the other can also be found In any event, the XOR of two plaintext streams can be attacked by using statistical properties of the message

7 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Counter Mode To allow random access to encrypted data –The IV plus a constant is encrypted, and the resulting ciphertext XORed with the plaintext –By stepping the IV by 1 for each new block, it is easy to decrypt a block anywhere in the file without first having to decrypt all of its predecessors

8 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Public-Key Algorithms Distributing keys => the weakest link in most cryptosystems –No matter how strong a cryptosystem was, if an intruder could steal the key, the system was worthless –Cryptologists always took for granted that the encryption key and decryption key were the same Diffie and Hellman (1976) proposed a radically new kind of cryptosystem: encryption and decryption keys were different –D(E(P)) = P –It is exceedingly difficult to deduce D from E –E cannot be broken by a chosen plaintext attack

9 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Public-Key Algorithms Public-key cryptography: –Encryption algorithm and the encryption key can be made public How to establish a secure channel –Alice and Bob have never had previous contact –Alice sends Bob E B (P) (message P encrypted using Bob’s public encryption key E B ) –Bob receives the encrypted message and retrieves the plaintext by using his private key P = D B (E B (P)) –Bobs then sends a reply E A (R) to Alice

10 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao RSA Rivest, Shamir, Adleman, 1978: a good method for public-key cryptography RSA method: –Choose two large primes, p and q (typically 1024 bits) –Compute n = p  q and z = ( p-1 )  ( q-1 ) –Choose a number relatively prime to z and call it d –Find e such that e  d = 1 mod z To encrypt a message, P, Compute C = P e (mod n) To decrypt C, compute P = C d (mod n) The public key consists of the pair (e, n) The private key consists of the pair (d, n)

11 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao RSA An example of the RSA algorithm –P = 3, q = 11 => n = 33 and z = 20 –A suitable value for d = 7 –e can be found by solving the eq. 7e = 1 (mod 20) => e = 3 –C = P 3 (mod 33), P = C 7 (mod 33)

12 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Digital Signatures Requirement on digital signatures: one party can send a signed message to another party in such a way that the following conditions hold: –The receiver can verify the claimed identity of the sender –The sender cannot later repudiate the contents of the message –The receiver cannot possibly have concocted the message himself

13 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Symmetric-Key Signatures Big Brother (BB): a central authority that knows everything and whom everyone trusts –Each user chooses a secret key and shares it with BB Digital signatures with Big Brother

14 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Public-Key Signatures Digital signatures using public-key cryptography –Requires E(D(P)) = P (in addition to D(E(P)) = P)

15 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Message Digests Message digest (MD): using a one-way hash function that takes an arbitrarily long piece of plaintext and from it computes a fixed-length bit string –Given P, it is easy to compute MD(P) –Given MD(P), it is effectively impossible to find P –Given P no one can find P’ such that MD(P’) = MD(P) –A change to the input of even 1 bit produces a very different output

16 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Hash Functions: MD5 and SHA-1 Hash function: mangling bits in a sufficiently complicated way that every output bit is affected by every input bit MD5 is the fifth in a series of message digests designed by Ronald Rivest (1992) –MD5 generates a 128-bit fixed value SHA-1: Secure Hash Algorithm 1, developed by National Security Agency (NSA) and blessed by NIST –SHA-1 generates 160-bit message digest

17 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Digital Signatures Using Message Digests

18 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Message Authentication Code MACs are used between two parties that share a secret key in order to validate information transmitted between these parties The MAC mechanism that is based on cryptographic hash functions is called HMAC. Basic idea: –Append the key to the plaintext and generate a digest using a hash function –Ship the plaintext together with the digest

19 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Management of Public Keys Problem statement Certificates X.509 Public key infrastructure

20 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Problems with Public-Key Management If Alice and Bob do not know each other, how do they get each other’s public keys to start the communication process ? –It is essential Alice gets Bob’s public key, not someone else’s A way for Trudy to subvert public-key encryption

21 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Certificates Certification Authority (CA): an organization that certifies public keys –It certifies the public keys belonging to people, companies, or even attributes –CA does not need to be on-line all the time (in ideal scenarios) A possible certificate and its signed hash

22 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao X.509 Devised and approved by ITU The basic fields of an X.509 certificate

23 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Public-Key Infrastructures A Public-Key Infrastructure (PKI) is needed for reasons of –Availability, Scalability, Ease of management A PKI has multiple components –Users, CAs, Certificates, Directories A PKI provides a way of structuring these components and define standards for the various documents and protocols –A simple form of PKI is hierarchical CAs

24 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Public-Key Infrastructures Hierarchical PKI A chain of trust/certification path: A chain of certificates going back to the root

25 Spring Semester 2008EEC-484/584: Computer NetworksWenbing Zhao Public-Key Infrastructures Revocation: sometimes certificates can be revoked, due to a number of reasons Reinstatement: a revoked certificate could conceivably be reinstated Each CA periodically issues a CRL (Certificate Revocation List) giving the serial numbers of all certificates that it has revoked –A user who is about to use a certificate must now acquire the CRL to see if the certificate has been revoked Having to deal with revocation (and possibly reinstatement) eliminates one of the best properties of certificates, namely, that they can be used without having to contact a CA