Axis-Based Virtual Coordinate Assignment Protocol and Delivery- Guaranteed Routing Protocol in Wireless Sensor Networks M.J.Tsai, H.Y.Yang, and W.Q.Huang.

Slides:



Advertisements
Similar presentations
Geographic Routing Without Location Information AP, Sylvia, Ion, Scott and Christos.
Advertisements

4/12/2015© 2009 Raymond P. Jefferis IIILect Internet Protocol - Continued.
Scalable Content-Addressable Network Lintao Liu
VirtualFace: An Algorithm to Guarantee Packet Delivery of Virtual-Coordinate- Based Routing in Wireless Sensor Networks Ming-Jer Tsai, Associate Professor.
Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets R. Fonseca, Berkeley; S. Ratnasamy, Intel Research; J. Zhao, ICI; C. T. Ee,
A Distributed Algorithm for the Dead End Problem of Location Based Routing in Sensor Networks Le Zou, Mi Lu, Zixiang Xiong, Department of Electrical Engineering,
Proposed ad hoc Routing Approaches Conventional wired-type schemes (global routing, proactive): –Distance Vector; Link State Proactive ad hoc routing:
Geo – Routing in ad hoc nets References: Brad Karp and H.T. Kung “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks”, Mobicom 2000 M. Zorzi,
Rumor Routing in Sensor Networks David Braginsky and Deborah Estrin Presented By Tu Tran 1.
Geographic Routing Without Location Information A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, I. Stoica Paper and Slides by Presented by Ryan Carr.
Stateless and Guaranteed Geometric Routing on Virtual Coordinate Systems Ke Liu and Nael Abu-Ghazaleh Dept. of CS, Binghamton University.
Good afternoon everyone.
A Mobile Infrastructure Based VANET Routing Protocol in the Urban Environment School of Electronics Engineering and Computer Science, PKU, Beijing, China.
Probability Grid: A Location Estimation Scheme for Wireless Sensor Networks Presented by cychen Date : 3/7 In Secon (Sensor and Ad Hoc Communications and.
後卓越計畫進度報告 (2007/6/4) 中央大學 許健平教授 淡江大學 張志勇教授. Routing with Hexagonal Virtual Coordinate in Wireless Sensor Networks.
Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets.
Chapter 5 TCP/IP: Routing – Part 1 Dr. V.T. Raja Oregon State University.
Ad Hoc Wireless Routing COS 461: Computer Networks
Delay Analysis of Large-scale Wireless Sensor Networks Jun Yin, Dominican University, River Forest, IL, USA, Yun Wang, Southern Illinois University Edwardsville,
Mobile Ad-hoc Pastry (MADPastry) Niloy Ganguly. Problem of normal DHT in MANET No co-relation between overlay logical hop and physical hop – Low bandwidth,
Sidewinder A Predictive Data Forwarding Protocol for Mobile Wireless Sensor Networks Matt Keally 1, Gang Zhou 1, Guoliang Xing 2 1 College of William and.
2008/2/191 Customizing a Geographical Routing Protocol for Wireless Sensor Networks Proceedings of the th International Conference on Information.
Lyon, June 26th 2006 ICPS'06: IEEE International Conference on Pervasive Services 2006 Routing and Localization Services in Self-Organizing Wireless Ad-Hoc.
Stochastic sleep scheduling (SSS) for large scale wireless sensor networks Yaxiong Zhao Jie Wu Computer and Information Sciences Temple University.
2015/10/1 A color-theory-based energy efficient routing algorithm for mobile wireless sensor networks Tai-Jung Chang, Kuochen Wang, Yi-Ling Hsieh Department.
1 Oblivious Routing in Wireless networks Costas Busch Rensselaer Polytechnic Institute Joint work with: Malik Magdon-Ismail and Jing Xi.
Network and Communications Ju Wang Chapter 5 Routing Algorithm Adopted from Choi’s notes Virginia Commonwealth University.
ENERGY-EFFICIENT FORWARDING STRATEGIES FOR GEOGRAPHIC ROUTING in LOSSY WIRELESS SENSOR NETWORKS Presented by Prasad D. Karnik.
Logical Topology Design and Interface Assignment for Multi- Channel Wireless Mesh Networks A. Hamed Mohsenian Rad Vincent W.S. Wong The University of British.
1 Internet Routing. 2 Terminology Forwarding –Refers to datagram transfer –Performed by host or router –Uses routing table Routing –Refers to propagation.
Load-Balancing Routing in Multichannel Hybrid Wireless Networks With Single Network Interface So, J.; Vaidya, N. H.; Vehicular Technology, IEEE Transactions.
Improving Routing in Sensor Networks with Heterogeneous Sensor Nodes Xiaojiang Du & Fengjing Lin Vehicular Technology Conference,2005 Spring,Volume 4.
FAR: Face-Aware Routing for Mobicast in Large-Scale Sensor Networks QINGFENG HUANG Palo Alto Research Center (PARC) Inc. and SANGEETA BHATTACHARYA, CHENYANG.
WEAR: A Balanced, Fault-Tolerant, Energy-Aware Routing Protocol for Wireless Sensor Networks Kewei Sha, Junzhao Du, and Weisong Shi Wayne State University.
GPSR: Greedy Perimeter Stateless Routing for Wireless Networks EECS 600 Advanced Network Research, Spring 2005 Shudong Jin February 14, 2005.
Secure and Energy-Efficient Disjoint Multi-Path Routing for WSNs Presented by Zhongming Zheng.
Bounded relay hop mobile data gathering in wireless sensor networks
A Dead-End Free Topology Maintenance Protocol for Geographic Forwarding in Wireless Sensor Networks IEEE Transactions on Computers, vol. 60, no. 11, November.
1 Computer Communication & Networks Lecture 21 Network Layer: Delivery, Forwarding, Routing Waleed.
Networking and internetworking devices. Repeater.
DHT-based unicast for mobile ad hoc networks Thomas Zahn, Jochen Schiller Institute of Computer Science Freie Universitat Berlin 報告 : 羅世豪.
Minimizing Recovery State In Geographic Ad-Hoc Routing Noa Arad School of Electrical Engineering Tel Aviv University Yuval Shavitt School of Electrical.
Geographic Routing without Location Information Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker and Ion Stoica MobiCom 2003.
1 Presented by Jing Sun Computer Science and Engineering Department University of Conneticut.
An Energy-Efficient Geographic Routing with Location Errors in Wireless Sensor Networks Julien Champ and Clement Saad I-SPAN 2008, Sydney (The international.
GLIDER: Gradient Landmark-Based Distributed Routing for Sensor Networks Qing Fang, Jie Gao, Leonidas J. Guibas, Vin de Silva, Li Zhang Department of Electrical.
Wireless Access and Networking Technology Lab WANT Energy-efficient and Topology-aware Routing for Underwater Sensor Networks Xiaobing Wu, Guihai Chen and.
November 4, 2003Applied Research Laboratory, Washington University in St. Louis APOC 2003 Wuhan, China Cost Efficient Routing in Ad Hoc Mobile Wireless.
A Small World Model for Improving Robustness of Heterogeneous Networks Diansong Luo, Tie Qiu*, Nakema Deonauth, Aoyang Zhao Presenter: Tie Qiu (PhD, Associate.
Energy Efficient Data Management for Wireless Sensor Networks with Data Sink Failure Hyunyoung Lee, Kyoungsook Lee, Lan Lin and Andreas Klappenecker †
Improving Fault Tolerance in AODV Matthew J. Miller Jungmin So.
On Mobile Sink Node for Target Tracking in Wireless Sensor Networks Thanh Hai Trinh and Hee Yong Youn Pervasive Computing and Communications Workshops(PerComW'07)
ProgessFace: An Algorithm to Improve Routing Efficiency of GPSR-like Routing Protocols in Wireless Ad Hoc Networks Chia-Hung Lin, Shiao-An Yuan, Shih-Wei.
ECE 544 Protocol Design Project 2016 Chengyao Wen Hua Deng Xiaoyu Duan.
VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks Zhao, J.; Cao, G. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 鄭宇辰
Straight Line Routing for Wireless Sensor Networks Cheng-Fu Chou, Jia-Jang Su, and Chao-Yu Chen Computer Science and Information Engineering Dept., National.
Wireless Control of a Multihop Mobile Robot Squad UoC Lab. 임 희 성.
A Location-Based Routing Method for Mobile Ad Hoc Networks
Virtual Domain and Coordinate Routing in Wireless Sensor Networks
COMP 3270 Computer Networks
Surviving Holes and Barriers in Geographic Data Reporting for
Connectivity-Aware Routing (CAR) in Vehicular Ad Hoc Networks
任課教授:陳朝鈞 教授 學生:王志嘉、馬敏修
ECE 544 Protocol Design Project 2016
ECE 544 Protocol Design Project 2016
A Probabilistic Routing Protocol for Mobile Ad Hoc Networks
Flyspec – a network for silicon fly sensors
ECE 544 Project3 Team member: BIAO LI, BO QU, XIAO ZHANG 1 1.
A Probabilistic Routing Protocol for Mobile Ad Hoc Networks
Greedy Distributed Spanning tree routing (gdstr)
Presentation transcript:

Axis-Based Virtual Coordinate Assignment Protocol and Delivery- Guaranteed Routing Protocol in Wireless Sensor Networks M.J.Tsai, H.Y.Yang, and W.Q.Huang

Outline Motivation Axis-Based Virtual Coordinate Assignment Protocol (ABVCap) Routing Protocol Multiple Virtual Coordinates Issue Simulation Results Conclusion

(27,12) (1,24) (3,21) (9,23) (0,15) (8,18) (14,15) (11,12) (2,10) (5,5) (11,6) (18,8) (20,13) (15,2) (24,8) (26,19) (28,3) (32,17) (29,22) (36,20) (41,15) (34,7) (39,12) (39,6) (10,0) p Virtual Coordinate c s a m j e 11 x i h t o g b u d r n k v l w q f source dest t Virtual coordinate assignment (6,5,5) (3,5,3) (0,8,5) (1,7,4) (7,3,6) (7,4,6) (5,5,1) (2,7,4) (2,8,3) (2,6,3) (3,5,2) (3,7,2) (4,6,1) (4,5,1) (4,4,2) (4,4,3) (5,6,0) (5,3,3) (5,4,4) (6,2,4) (6,4,5) (8,2,7) (7,1,5) (8,1,6) (8,0,6)

(0,8,5) (1,7,4) (2,7,4) (2,8,3) (2,6,3) (3,6,4) (3,5,3) (3,5,2) (3,7,2) (4,6,1) (4,5,1) (4,4,2) (4,4,3) (5,6,0) (5,5,1) (5,3,3) (5,4,4) (6,5,5) (6,2,4) (6,4,5) (7,4,6) (7,3,6) (8,2,7) (7,1,5) (8,1,6) (8,0,6) VCap b p h e t w l k u a g f j x r i o v n m d z c s q y z q s Anchor X Anchor Z Anchor Y (4,4,3)

a o VCap Routing: Forward packets to a neighbor having closer distance to destination b p h e t w l k u g f j x r i v n m d z c s q y Dist(A,B): Distance between two nodes A (x 1,y 1,z 1 ) and B (x 2,y 2,z 2 ) is (0,8,5) (1,7,4) (2,7,4) (2,8,3) (2,6,3) (3,6,4) (3,5,3) (3,5,2) (3,7,2) (4,6,1) (4,5,1) (4,4,2) (4,4,3) (5,6,0) (5,5,1) (5,3,3) (5,4,4) (6,5,5) (6,2,4) (6,4,5) (7,4,6) (7,3,6) (8,2,7) (7,1,5) (8,1,6) (8,0,6)

(0,8,5) (1,7,4) (2,7,4) (2,8,3) (2,6,3) (3,6,4) (3,5,3) (3,5,2) (3,7,2) (4,6,1) (4,5,1) (4,4,2) (4,4,3) (5,6,0) (5,5,1) (5,3,3) (5,4,4) (6,5,5) (6,2,4) (6,4,5) (7,4,6) (7,3,6) (8,2,7) (7,1,5) (8,1,6) (8,0,6) b p h e w l k a g f j x r i o v n m d z c s q y Greedy forwarding is not available source dest t u Dead-End Node Problem: No neighbor is closer to destination

Motivation VCap routing does not need physical address VCap routing does not guarantee packet delivery Require a delivery-guaranteed routing protocol without physical address !!

Our Idea Location is represented by longitude and latitude using meridians and parallels Establish meridians and parallels Assign (longitude, latitude) to each sensor

Selection of Four Anchors Establishment of Parallel Establishment of Meridians Assignment of longitude and latitude: Join nearest node (2,1) (2,2) ABVCap v e w s q h i c p u a m r g l t j b d k f o x h s v g (3,0) (2,0) (1,0) (0,0) (2,-1) (2,-2) (2,1) n Z Z’ Y X Anchor X Anchor Y Anchor Z Anchor Z’ (longitude, latitude) Meridian_2+ Meridian_2-

v e w s q h i c p u a m r g l t j b d k f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,2) (1,-1) (2,-2) (2,1) (2,0) (0,1) (0,2) (2,1) (3,1) (3,2) (2,2)(0,3) (0,1) (3,1) (0,-1) (1,0) (3,-1) (3,-2) (3,-3) (0,-2) (1,-2) (1,0) (2,-1) n (0,2) Multiple Assignment of Longitude and Latitude (longitude, latitude)

v e w s q h i c p u a m r g l t j b d k f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,-1) (2,1) (2,0) (0,1) (0,2) (2,1) (0,3) (0,1) (0,-1) (1,0) (3,-1) (3,-2) (1,0) (2,-1) n (0,2) (3,1) (3,-3) Assignment of Up, Down, and Ripple (3,1)

v e w s q h i c p u a m r g l t j b d k f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,-1) (2,1) (2,0) (0,1) (0,2) (2,1) (0,3) (0,1) (0,-1) (1,0) (3,-1) (3,-2) (1,0) (2,-1) n (0,2) Up=1Up=2 (3,1) (3,-3) (3,1) Up: The minimal hop count to a node having longitude larger by one

v e w s q h i c p u a m r g l t j b d k f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,-1) (2,1) (2,0) (0,1) (0,2) (2,1) (0,3) (0,1) (0,-1) (1,0) (3,-1) (3,-2) (1,0) (2,-1) n (0,2) Down=1 Down=2 (3,1) (3,-3) (3,1) Down: The minimal hop count to a node having longitude smaller by one

v e w s q h i c p u a m r g l t j b d k f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,-1) (2,1) (2,0) (0,1) (0,2) (2,1) (0,3) (0,1) (0,-1) (1,0) (3,-1) (3,-2) (1,0) (2,-1) n (0,2) Ripple=1 (3,1) (3,-3) (3,1) Ripple: The minimal hop count to the node it joined Ripple=0

Virtual Coordinate Assignment Longitude and latitude Denote location Up, down, and ripple Assist routing

Longitude routing Correction of longitude Latitude routing Correction of latitude Proactive routing Destination Routing Protocol Parallel Meridian Longitude routing Correction of longitude Latitude routing Correction of latitude Proactive routing Destination Source Destination Equal longitude to destination Equal longitude and latitude to destination

LoDiff=2 LoDiff=3 LoDiff=2 Longitude Routing: Forward packets to a neighbor having smaller difference in longitude with destination (Greedy) Longitude Routing: Correct longitude v e w s q h i c p u a m r g l t j b k f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,-1) (2,1) (2,0) (0,1) (0,2) (2,1) (3,1) (0,3) (0,1) (3,1) (0,-1) (1,0) (3,-1) (3,-2) (3,-3) (1,0) (2,-1) (0,2) d n source dest LoDiff=2

Longitude Routing: Forward packets to a neighbor having equal longitude and smaller down Longitude Routing: Forward packets to a neighbor having smaller difference in longitude with destination (Greedy) (0,2,0) (2,0,2) (3,1,1) (2,1,1) v e w s q h i c p u a m r g l t j b k f o x (3,0,1) (2,0,1) (1,0,1) (0,0,0) (1,1,1) (1,-1,2) (0,1,0) (0,2,0) (3,1,1) (0,3,0) (0,1,0) (0,-1,0) (1,0,1) (3,-1,1) (3,-2,1) (3,-3,1) (1,0,2) (2,-1,1) (2,-1,2) d n source dest (longitude, latitude, down) Equal longitude to destination

Latitude Routing: Forward packets to a neighbor having smaller difference in latitude with destination (Greedy) Latitude Routing: Correct latitude v e w s q h i c p u a m r g l t j b k f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,-1) (2,1) (2,0) (0,1) (0,2) (2,1) (3,1) (0,3) (0,1) (3,1) (0,-1) (1,0) (3,-1) (3,-2) (3,-3) (1,0) (2,-1) (0,2) d n source dest Equal longitude to destination LaDiff=1 LaDiff=2 LaDiff=1

Latitude Routing: Forward packets to a neighbor having smaller ripple and equal longitude and latitude (Toward the node it joined) Latitude Routing: Forward packets to a neighbor having smaller difference in latitude with destination (Greedy) (0,1,1) (1,1,0) (1,0,0) v e w s q h i c p u a m r g l t j b k f o x (3,0,0) (2,0,0) (0,0,0) (1,-1) (2,1,1) (2,0,1) (0,1,0) (0,2,0) (2,1,0) (3,1,0) (0,3,0) (3,1,1) (0,-1,0) (1,0,1) (3,-1,0) (3,-2,0) (3,-3,0) (1,0,1) (2,-1,0) (2,-1,1) (0,2,0) d n source dest (longitude, latitude, ripple) Equal longitude and latitude to destination

Proactive Routing: Local Routing Table v e w s q h i c p u a m r g l t j b k f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,-1) (2,1) (2,0) (0,1) (0,2) (2,1) (3,1) (0,3) (0,1) (3,1) (0,-1) (1,0) (3,-1) (3,-2) (3,-3) (1,0) (2,-1) (0,2) d n source dest …… nextdest nn Local routing table of node u

v e w s q h i c k u a m r g p t j b d l f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,2) (1,-1) (2,-2) (2,1) (2,0) (0,1) (0,2) (2,1) (3,1)(3,2) (2,2)(0,3) (0,1) (3,1) (0,-1) (1,0) (3,-1) (3,-2) (3,-3) (0,-2) (1,-2) (1,0) (2,-1) n (0,2) Multiple Virtual Coordinates Issue : Overlap of meridians How to Route Packets When Nodes Have Multiple Virtual Coordinates ?

Choice of Virtual Coordinate: The one having the smallest difference in longitude with destination k v e w s q h c u a m r g p t j b d l f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,2) (1,-1) (2,-2) (2,1) (2,0) (0,1) (0,2) (2,1) (3,1) (3,2) (2,2) (0,3) (0,1) (3,1) (0,-1) (1,0) (3,-1) (3,-2) (3,-3) (0,-2) (1,-2) (1,0) (2,-1) (0,2) source i (0,3) dest n LoDiff=0 LoDiff=2 LoDiff=3 LoDiff=1

k v e w s q h c u a m r g p t j b d l f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,2) (1,-1) (2,-2) (2,1) (2,0) (0,1) (0,2) (2,1) (3,1) (3,2) (2,2)(0,3) (0,1) (3,1) (0,-1) (1,0) (3,-1) (3,-2) (3,-3) (0,-2) (1,-2) (1,0) (2,-1) (0,2) source i (0,3) dest n Choice of Virtual Coordinate: The one having the smallest difference in longitude with destination

Simulation Assumptions Each sensor has a unique ID Sensors are static Sensors are homogeneous Network behaviors are not taken into consideration

Routing Path Length ABVCap VCap Euclidian

Routing Path Length of Delivery- Guaranteed Routing Protocols ABVCap GSR GPSR

Conclusion ABVCap routing A delivery-guaranteed routing protocol Without necessity of physical address Future research Heterogeneous networks Fault-tolerance

Thank You !!

j hh r u a v e w s q h i c l u a m r g p t j b d k f o x n Selection of Four Anchors s v g Anchor X Anchor Y Anchor Z Anchor Z’ Sink W H(X)=H(Y)±1 c k ow p g x e i

Assignment of Up Coordinate Up coordinate is the hop count to a node having longitude lager than one, where the shortest path pass through nodes having equal longitude longitude k-1longitude k+1longitude k Up=1Up=2

k v e w s q h c u a m r g p t j b d l f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,2) (1,-1) (2,-2) (2,1) (2,0) (0,1) (0,2) (2,1) (3,1) (3,2) (2,2)(0,3) (0,1) (3,1) (0,-1) (1,0) (3,-1) (3,-2) (3,-3) (0,-2) (1,-2) (1,0) (2,-1) (0,2) source i Is Random Choosing Available ? (1,2) des n

k v e w s q h c u a m r g p t j b d l f o x (3,0) (2,0) (1,0) (0,0) (1,1) (1,2) (1,-1) (2,-2) (2,1) (2,0) (0,1) (0,2) (2,1) (3,1) (3,2) (2,2)(0,3) (0,1) (3,1) (0,-1) (1,0) (3,-1) (3,-2) (3,-3) (0,-2) (1,-2) (1,0) (2,-1) (0,2) source i (3,2) des Is Random Choosing Available ? Routing loop!! n Is Random Choosing Available ?

Number of Virtual Coordinates

Size of Local Routing Table