A Superlattice model for superconductivity in the Borocarbides Thereza Paiva M. El Massalami Raimundo R. dos Santos UFRJ.

Slides:



Advertisements
Similar presentations
THE ISING PHASE IN THE J1-J2 MODEL Valeria Lante and Alberto Parola.
Advertisements

Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Penning-Trap Mass Spectrometry for Neutrino Physics
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Correlation functions in the Holstein-Hubbard model calculated with an improved algorithm for DMRG Masaki Tezuka, Ryotaro Arita and Hideo Aoki Dept. of.
Disordered two-dimensional superconductors Financial support: Collaborators: Felipe Mondaini (IF/UFRJ) [MSc, 2008] Gustavo Farias (IF/UFMT) [MSc, 2009]
Plasmonics in double-layer graphene
Chapter 7 periodic trends
Ondas de densidade de carga em 1D: Hubbard vs. Luttinger? Thereza Paiva (UC-Davis) e Raimundo R dos Santos (UFRJ) Work supported by Brazilian agenciesand.
Superconductivity: modelling impurities and coexistence with magnetic order Collaborators: Pedro R Bertussi (UFRJ) André L Malvezzi (UNESP/Bauru) F. Mondaini.
The Ideas of Unified Theories of Physics Tareq Ahmed Mokhiemer PHYS441 Student.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
Modified Coulomb potential of QED in a strong magnetic field Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics.
The Three Hallmarks of Superconductivity
Quick and Dirty Introduction to Mott Insulators
Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Kinetic Theory of Matter States of Matter: A Physical Change.
Rotational bands in the rare-earth proton emitters and neighboring nuclei Darek Seweryniak Argonne National Laboratory PROCON Rotational landscape.
Periodic Table – Filling Order
Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca.
Matter and Measurements  Atom  Element  Law Of Definite Proportions.
Heat Capacities of 56 Fe and 57 Fe Emel Algin Eskisehir Osmangazi University Workshop on Level Density and Gamma Strength in Continuum May 21-24, 2007.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
LUTTINGER LIQUID Speaker Iryna Kulagina T. Giamarchi “Quantum Physics in One Dimension” (Oxford, 2003) J. Voit “One-Dimensional Fermi Liquids” arXiv:cond-mat/
1.Introduction 2.Formalism 3.Results 4.Summary I=2 pi-pi scattering length with dynamical overlap fermion I=2 pi-pi scattering length with dynamical overlap.
ISIR Tanaka lab. Tatsuya Hori 層状鉄酸化物を用いた電子相変化デバイスの 応用に向けた研究.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Unconventional superconductivity Author: Jure Kokalj Mentor: prof. dr. Peter Prelovšek.
Wonderful World of Water. H2OH2O Oxygen is more electronegative then hydrogen. Electrons move towards the oxygen giving it a slight (-) charge and leaving.
Phase transitions in Hubbard Model. Anti-ferromagnetic and superconducting order in the Hubbard model A functional renormalization group study T.Baier,
Relativistic BCS-BEC Crossover in a boson-fermion Model
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Lawrence Livermore National Laboratory Norm Tubman Jonathan DuBois, Randolph Hood, Berni Alder Lawrence Livermore National Laboratory, P. O. Box 808, Livermore,
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
n n n Group I Group I Metallofullerenes Donate 1 electron to cage M 2n − Distribution similar to empty cages C 60 and C 70 dominant.
2n 2n 2n 2n 2n 2n n
Nuclear Physics. Nuclear Structure Nucleus – consists of nucleons (neutrons and protons) Nucleus – consists of nucleons (neutrons and protons) Atomic.
Lecture schedule October 3 – 7, 2011
Non-Fermi liquid behavior with and without quantum criticality in Ce 1−x Yb x CoIn 5 Carmen C. Almasan, Kent State University, DMR One of the greatest.
Bc → J/   Lifetime measurement Use 6.7 fb -1 and try two independent approaches Selection 1: no dependence of selection on decay time Fit fixes bkgd.
3.3 The Atom. Periodic Table of Elements Atomic Number: Number of protons in an atom; usually appears directly above the chemical symbol. Number of protons.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
When and who? In 1869 Russian Chemist Dimitri Mendeleev and German chemist Lothar Meyer published nearly identical ways of classifying.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Numerical Study of the 1D Asymmetric Hubbard Model Cristian Degli Esposti Boschi CNR, Unità di ricerca CNISM di Bologna and Dipartimento di Fisica, Università.
Looking for Patterns in Data
Color Superconductivity in High Density QCD
Periodic Table of Elements
TOPIC 0C: Atomic Theory.
Analysis of Indian blue ballpoint pen inks tagged with rare-earth thenoyltrifluoroacetonates by inductively coupled plasma–mass spectrometry and instrumental.
CHEM /28/11 VI. 2nd Law of THERMO
Oleg Pavlovsky (ITPM MSU)
Covalent Properties Polarity and IMF.
Density imbalanced mass asymmetric mixtures in one dimension
1.7 Trends in the Periodic Table
Chapter 11 Review.
Colour Breaking Baryogenesis
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
Superconductivity in Systems with Diluted Interactions
Superfluid-Insulator Transition of
Phase structure of graphene from Hybrid Monte-Carlo simulations
Color Superconductivity in dense quark matter
Color Superconductivity in High Density QCD
Where are the superconductors?
Color Superconductivity in High Density QCD
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Bond Energy 5.3.
Presentation transcript:

A Superlattice model for superconductivity in the Borocarbides Thereza Paiva M. El Massalami Raimundo R. dos Santos UFRJ

Borocarbides Model Transport properties Phase diagrams Conclusions

Borocarbides

RT 2 B 2 C  1 RC layer T=Ni R=Sc, Y, Ce, Dy, Ho, Er, Tm, Lu, U, Th  SUC coexistence SUC and MAG (all above but Lu) R= Yb  Heavy fermion RTBC  2 RC layers T=Ni  no SUC, no HF T=Co  single layer R=Lu, Tm, Er, Ho Dy, Gd, Ce  no SUC R=La  single layer T=Ni  no SUC no MAG T=Pd, Pt  SUC

U<0 U=0 U<0 U=0 U<0 U=0       RT 2 B 2 C       RTBC U<0 U=0 U=0 Model attractive sites T 2 B 2 RC  no f electrons

 Layering  L 0 =1 and L 0 =2  Chemical Composition  ,  and U SUC Lanczos Method  Exact Finite-sized sistems  no spontaneous symmetry breaking One-dimensional system  no true LRO quasi-ordered states  power law decay of “SUC” correlations with distance Extrapolations towards thermodynamic limit

Transport properties Charge gap  single particle excitations  C = E(N c,N e +1)+E(N c,N e 1) - 2E(N c,N e )  C D C I  0 = 0 S  0  0 M = 0  0 Drude weight   (  )=D C  (  )+g(  )

Charge Gap Extrapolation with 1/N S  C = 0   <    C  0      Gaussian fit to  2  C /  2    =2.7±0.6 L 0 =1  =5/3 U=-4

Drude Weight Extrapolation with 1/N S 2 ( 1/N S, ln N S ) D C = 0     D D C  0   <  D D SL /D H =   D =18±1 L 0 =1  =5/3 U=-4 Exponential decay

S-wave singlet correlation function  i  l  i+l C(i,l) =½ i  attractive site C( i,l = 2) =1   =2±1  D =7.0 ±0.5  =11/6 N S =24 U=-4

Phase Diagram  fixed |U|  C =1 L 0 =1  C =1.33 L 0 =2 Strong coupling  >> |U| >> 1 CC

Repeat the procedure L 0 =2 other 

Phase Diagram  fixed   =5/3 >  C Reentrant SUC

Conclusions Balance between layering, chemical composition and SUC SUC  larger region for L 0 =1 than L 0 =2 single layer material  SUC double layer material  no SUC Reentrant SUC