A Superlattice model for superconductivity in the Borocarbides Thereza Paiva M. El Massalami Raimundo R. dos Santos UFRJ
Borocarbides Model Transport properties Phase diagrams Conclusions
Borocarbides
RT 2 B 2 C 1 RC layer T=Ni R=Sc, Y, Ce, Dy, Ho, Er, Tm, Lu, U, Th SUC coexistence SUC and MAG (all above but Lu) R= Yb Heavy fermion RTBC 2 RC layers T=Ni no SUC, no HF T=Co single layer R=Lu, Tm, Er, Ho Dy, Gd, Ce no SUC R=La single layer T=Ni no SUC no MAG T=Pd, Pt SUC
U<0 U=0 U<0 U=0 U<0 U=0 RT 2 B 2 C RTBC U<0 U=0 U=0 Model attractive sites T 2 B 2 RC no f electrons
Layering L 0 =1 and L 0 =2 Chemical Composition , and U SUC Lanczos Method Exact Finite-sized sistems no spontaneous symmetry breaking One-dimensional system no true LRO quasi-ordered states power law decay of “SUC” correlations with distance Extrapolations towards thermodynamic limit
Transport properties Charge gap single particle excitations C = E(N c,N e +1)+E(N c,N e 1) - 2E(N c,N e ) C D C I 0 = 0 S 0 0 M = 0 0 Drude weight ( )=D C ( )+g( )
Charge Gap Extrapolation with 1/N S C = 0 < C 0 Gaussian fit to 2 C / 2 =2.7±0.6 L 0 =1 =5/3 U=-4
Drude Weight Extrapolation with 1/N S 2 ( 1/N S, ln N S ) D C = 0 D D C 0 < D D SL /D H = D =18±1 L 0 =1 =5/3 U=-4 Exponential decay
S-wave singlet correlation function i l i+l C(i,l) =½ i attractive site C( i,l = 2) =1 =2±1 D =7.0 ±0.5 =11/6 N S =24 U=-4
Phase Diagram fixed |U| C =1 L 0 =1 C =1.33 L 0 =2 Strong coupling >> |U| >> 1 CC
Repeat the procedure L 0 =2 other
Phase Diagram fixed =5/3 > C Reentrant SUC
Conclusions Balance between layering, chemical composition and SUC SUC larger region for L 0 =1 than L 0 =2 single layer material SUC double layer material no SUC Reentrant SUC