Dividing Polynomials Section 2.4. Objectives Divide two polynomials using either long division or synthetic division. Use the Factor Theorem to show that.

Slides:



Advertisements
Similar presentations
Remainder and Factor Theorems
Advertisements

Dividing Polynomials.
Chapter 2 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Dividing Polynomials: Remainder and Factor Theorems.
Polynomial Division Division Long and Short. 8/10/2013 Polynomial Division 2 Division of Polynomials Long Division (by hand): Polynomial Functions 245.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Dividing Polynomials; Remainder and Factor Theorems.
Bell Problem Find the real number solutions of the equation: 18x 3 = 50x.
3.2 Polynomials-- Properties of Division Leading to Synthetic Division.
Dividing Polynomials Intro - Chapter 4.1. Using Long Division Example 1: Dividing Polynomials DIVISOR DIVIDEND REMAINDER QUOTIENT.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 3 Polynomial and Rational Functions.
3.3: Dividing Polynomials: Remainder and Factor Theorems Long Division of Polynomials 1.Arrange the terms of both the dividend and the divisor in descending.
ACTIVITY 34 Review (Sections ).
2.4 – Real Zeros of Polynomial Functions
Division and Factors When we divide one polynomial by another, we obtain a quotient and a remainder. If the remainder is 0, then the divisor is a factor.
Long Division Algorithm and Synthetic Division!!!
5.4 – Apply the Remainder and Factor Theorems Divide 247 / / 8.
Polynomial Division and the Remainder Theorem Section 9.4.
6.5 The Remainder and Factor Theorems p. 352 How do you divide polynomials? What is the remainder theorem? What is the difference between synthetic substitution.
Copyright © 2009 Pearson Education, Inc. CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions.
1 What we will learn today…  How to divide polynomials and relate the result to the remainder and factor theorems  How to use polynomial division.
 PERFORM LONG DIVISION WITH POLYNOMIALS AND DETERMINE WHETHER ONE POLYNOMIAL IS A FACTOR OF ANOTHER.  USE SYNTHETIC DIVISION TO DIVIDE A POLYNOMIAL BY.
The Remainder and Factor Theorems
The Remainder and Factor Theorems 6.5 p When you divide a Polynomial f(x) by a divisor d(x), you get a quotient polynomial q(x) with a remainder.
2.3 Polynomial Division and Synthetic Division Ex. Long Division What times x equals 6x 3 ? 6x 2 6x x 2 Change the signs and add x x.
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley 4.3 Polynomial Division; The Remainder and Factor Theorems  Perform long division.
ACTIVITY 31: Dividing Polynomials (Section 4.2, pp )
6-7 The Division Algorithm & The Remainder Theorem dividend=quotient. divisor + remainder If a polynomial f(x) is divided by x - c, the remainder is the.
1. 2 Polynomial Function A polynomial function is a function of the form where n is a nonnegative integer and each a i (i = 0,1,…, n) is a real number.
Section 2-2 Synthetic Division; The Remainder and Factor Theorems.
4.3: Real Zeroes of Polynomials Functions February 13, 2008.
Factor Theorem Using Long Division, Synthetic Division, & Factoring to Solve Polynomials.
Textbook page 581 #’s 1, 2. Do Now – Example #1 Example 1: Divide 758 by 6 without a calculator using long division Identify: Dividend = ____________.
Dividing Polynomials Section 2.4. Objectives Divide two polynomials using either long division or synthetic division. Use the Factor Theorem to show that.
12/23/ Division and The Remainder Theorem.
Polynomial & Synthetic Division Algebra III, Sec. 2.3 Objective Use long division and synthetic division to divide polynomials by other polynomials.
Graded Warm Up  Complete the graded warm up on your desk by yourself. There should be no talking.
a. b.  To simplify this process, we can use a process called division.  Synthetic division works when dividing a polynomial by.  To get started, make.
3.3 Polynomial and Synthetic Division. Long Division: Let’s Recall.
5.5 – Dividing Polynomials Divide 247 / / 8.
Section 4.3 Polynomial Division; The Remainder and Factor Theorems Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
5-4 Dividing Polynomials Synthetic Division
Long and Synthetic Division. Long Division Polynomial long division can be used to divide a polynomial d(x), producing a quotient polynomial q(x) and.
Polynomial Division Objective: To divide polynomials by long division and synthetic division.
Polynomial Long Division
College Algebra Chapter 3 Polynomial and Rational Functions Section 3.3 Division of Polynomials and the Remainder and Factor Theorems.
3.2 Division of Polynomials. Remember this? Synthetic Division 1. The divisor must be a binomial. 2. The divisor must be linear (degree = 1) 3. The.
Do Now: Divide Write out as much work as possible. Don’t divide in your head
Dividing Polynomials Section 4.3.
Polynomial Division.
Dividing Polynomials A review of long division:
Section 5.4 – Dividing Polynomials
The Remainder and Factor Theorems
Dividing Polynomials Long Division A little review:
4.3 Division of Polynomials
Polynomial Division; The Remainder Theorem and Factor Theorem
Honors Precalculus February 10, 2017 Mrs. Agnew
Honors Precalculus February 21, 2018 Mr. Agnew
Division of Polynomials
Division of Polynomials and the Remainder and Factor Theorems
Remainder and Factor Theorem
5.5 Apply the Remainder and Factor Theorems
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Long Division and Synthetic Division
6.5 The Remainder and Factor Theorems
The Remainder and Factor Theorems
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Dividing Polynomials.
Precalculus Essentials
The Remainder and Factor Theorems
5.5 Apply the Remainder and Factor Theorems
Presentation transcript:

Dividing Polynomials Section 2.4

Objectives Divide two polynomials using either long division or synthetic division. Use the Factor Theorem to show that x-c is a factor of a polynomial. Use the Remainder Theorem to evaluate a polynomial at a given value.

Vocabulary quotient remainder dividend divisor

Division Algorithm If f (x) and d (x) are polynomials, with d(x) ≠ 0, and the degree of d(x) is less than or equal to the degree of f (x), then there exists unique polynomials q(x) and r(x) such that f(x) = d(x) · q(x) + r(x) The remainder, r(x), equals 0 or it is of degree less than the degree of d(x). If r(x) = 0, we say that d(x) divides evenly into f(x) and that d(x) and q(x) are factors of f(x).

Find the quotient and remainder using long division.

Find the quotient and remainder using synthetic division.

Remainder Theorem If the polynomial f (x) is divided by x – c, then the remainder is f (c).

Use division and the Remainder Theorem to evaluate P(c), where

Factor Theorem Let f (x) be a polynomial a.If f(c) = 0, then x – c is a factor of f (x). b.If x – c, is a factor of f(x), then f(c) = 0.

Use synthetic division to show that x = 6 is a root of