Measuring the clustering of galaxies in COSMOS Measuring the clustering of galaxies in COSMOS Olivier Le Fèvre, LAM Why ? Why ? How ? correlation function.

Slides:



Advertisements
Similar presentations
Malaysia 2009 Sugata Kaviraj Oxford/UCL Collaborators: Sukyoung Yi, Kevin Schawinski, Eric Gawiser, Pieter van Dokkum, Richard Ellis Malaysia 2009 Early-type.
Advertisements

Evolution of clustering in COSMOS: a progress report Luigi Guzzo (INAF, Milano) N. Scoville, O. Le Fevre, A. Pollo, B. Meneux, & COSMOS Team.
Ultra-Deep galaxy surveys with the early build-up of galaxies Olivier Le Fèvre With the DIORAMAS team (F, IT, CH, SP)
The CFHT- Legacy Survey Elisabetta Semboloni Argelander Institut für Astronomie.
Hierarchical Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Reunión Latinoamericana de Astronomía Córdoba, septiembre 2001.
Galaxy and Mass Power Spectra Shaun Cole ICC, University of Durham Main Contributors: Ariel Sanchez (Cordoba) Steve Wilkins (Cambridge) Imperial College.
Clusters, Galaxies and the COSMOS J Berian James (IfA Edinburgh), John Peacock, Alexis Finoguenov, Henry Joy McCracken & Gigi Guzzo for the COSMOS collaboration.
COSMOS Kyoto meeting May 2005 Obscured AGN in the COSMOS field Andrea Comastri (INAF – Bologna) on behalf of the XMM-COSMOS team.
Star formation and submm/far- IR luminous galaxies Andrew Blain Caltech 26 th May 2005 Kyoto COSMOS meeting.
Clustering in the Cosmic Evolution Survey (COSMOS) Luigi Guzzo (INAF, Milano) N. Scoville, A. El Zant, O. Le Fevre, B. Meneux, A. Pollo & COSMOS Team (Fundamental.
Evolution of Luminous Galaxy Pairs out to z=1.2 in the HST/ACS COSMOS Field Jeyhan Kartaltepe, IfA, Hawaii Dave Sanders, IfA, Hawaii Nick Scoville, Caltech.
DESpec survey strategy : realistic mock catalogue and target selection Stephanie Jouvel, Filipe Abdalla, Huan Lin, James Annis, Richard Kron 22 jun 2011.
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
Colleen Corradi Brannigan, “Sofronia” Galaxy clustering in the Canada-France Legacy Survey H.J. McCracken and folks from TERAPIX and VVDS consortia For.
Galaxy-Galaxy lensing
Relating Mass and Light in the COSMOS Field J.E. Taylor, R.J. Massey ( California Institute of Technology), J. Rhodes ( Jet Propulsion Laboratory) & the.
Angular clustering and halo occupation properties of COSMOS galaxies Cristiano Porciani.
Evolution of Luminous Galaxy Pairs out to z=1.2 in the HST/ACS COSMOS Field Jeyhan Kartaltepe, IfA, Hawaii Dave Sanders, IfA, Hawaii Nick Scoville, Caltech.
Luminosity & color of galaxies in clusters sarah m. hansen university of chicago with erin s. sheldon (nyu) risa h. wechsler (stanford)
The Clustering of AGN Using Photometric Redshifts Elias Koulouridis Antonis Georgakakis National Observatory of Athens.
Masami Ouchi (Space Telescope Science Institute) for the SXDS Collaboration Cosmic Web Made of 515 Galaxies at z=5.7 Kona 2005 Ouchi et al ApJ, 620,
Olivier Le Fèvre, Laboratoire d’Astrophysique de Marseille 1.
Environmental Properties of a Sample of Starburst Galaxies Selected from the 2dFGRS Matt Owers (UNSW) Warrick Couch (UNSW) Chris Blake (UBC) Michael Pracy.
The assembly of stellar mass during the last 10 Gyr: VVDS results B.Garilli on behalf of the VVDS consortium 1 topic, 4 approaches, concordant results.
17 may 04leonidas moustakas STScI 1 High redshift (z~4) galaxies & clustering Lexi Moustakas STScI.
Cosmic scaffolding and the growth of structure Richard Massey (CalTech ) with Jason Rhodes (JPL), David Bacon (Edinburgh), Joel Berg é (Saclay), Richard.
XMM-Newton surveys of X-ray galaxy groups Alexis Finoguenov MPE/UMBC+ S.Giodini, V.Allevato, M. Tanaka, A. Leauthaud, O. Ilbert, N.Cappelluti, J.Silverman,
Overview of the L A M Main research axes: Formation and evolution of galaxies, Cosmology Interstellar medium Extra-solar planets Instrumental developments:
Culling K-band Luminous, Massive Star Forming Galaxies at z>2 X.Kong, M.Onodera, C.Ikuta (NAOJ),K.Ohta (Kyoto), N.Tamura (Durham),A.Renzini, E.Daddi (ESO),
The Formation and Evolution of Galaxies What were the first sources of light in the Universe? How were luminous parts of galaxies assembled? How did the.
PAU survey collaboration: Barcelona (IFAE, ICE(IEEC/CSIC), PIC), Madrid (UAM & CIEMAT), València (IFIC & UV), Granada (IAA) PAU survey Physics of the Accelerating.
Next generation redshift surveys with the ESO-VLT
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
1 VVDS: Towards a complete census of star formation at 1.4
Francisco Javier Castander Serentill Institut d’Estudis Espacials de Catalunya (IEEC) Institut de Ciències de l’Espai (ICE/CSIC) Barcelona Exploiting the.
Surveying the Universe with SNAP Tim McKay University of Michigan Department of Physics Seattle AAS Meeting: 1/03 For the SNAP collaboration.
Properties of the point-like sources in the XMM-LSS field Olga Melnyk and XMM-LSS collaboration N. Clerc, L. Chiappetti, A. Elyiv, P.Gandhi, E.Gosset,
The Environmental Effect on the UV Color-Magnitude Relation of Early-type Galaxies Hwihyun Kim Journal Club 10/24/2008 Schawinski et al. 2007, ApJS 173,
Stéphane Arnouts David Schiminovich Olivier Ilbert and VVDS and GALEX teams THE GALEX-VVDS DEEP SURVEYS : Evolution of the Far UV luminosity Function and.
June 7, 2010COSMOS Team Meeting, IfA, Hawaii 1 The COSMOS Archive: Eight Years of Data Patrick L. Shopbell (Caltech), Nick Scoville (Caltech), The COSMOS.
Luminosity Functions from the 6dFGS Heath Jones ANU/AAO.
The European Extremely Large Telescope Studying the first galaxies at z>7 Ross McLure Institute for Astronomy, Edinburgh University.
COSMOS-21 Subaru S05B-S06A Intensive Program Taniguchi et al. COSMIC EVOLUTION SURVEY COSMOS 2-sq. degree survey COSMOS Status Previous S-cam Runs COSMOS-21.
Finding z  6.5 galaxies with HST’s WFC3 and their implication on reionization Mark Richardson.
Redshift Evolution Of The Morphology Density Relation Peter Capak B. Mobasher, R. Abraham, R. Ellis, K. Sheth, N. Scoville Postdoctoral Fellow California.
1 Deep spectroscopic redshift surveys are a central tool to modern Astrophysics Deep redshift surveys (z>0.3) have shaped our current understanding: 
Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005.
Z-FOURGE - the FourStar Galaxy Evolution Survey Status Report at the 1.3-year mark.
SIMULATING THE GROUP FINDING IN THE DEEP2 SURVEY WITH PHOTOMETRIC REDSHIFT INFORMATION H.-Y. Baobab Liu 1, B.-C. Paul Hsieh 2, L.-H. Lin 3 1. NTU; 2. ASIAA;
Cosmology at LAM Cosmology at LAM A deep and wide look in the Universe Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille.
The zCOSMOS 3D density field Katarina Kovač 1, Simon Lilly 1, C. Porciani 1, O. Cucciati 2, A. Iovino 2, C. Knobel 1, C.M. Carollo 1, P. Oesch 1, A. Finoguenov.
Emission Line Galaxy Targeting for BigBOSS Nick Mostek Lawrence Berkeley National Lab BigBOSS Science Meeting Novemenber 19, 2009.
Cosmos Survey PI Scoville HST 590 orbits I-band 2 deg. 2 !
Luminous Red Galaxies in the SDSS Daniel Eisenstein ( University of Arizona) with Blanton, Hogg, Nichol, Tegmark, Wake, Zehavi, Zheng, and the rest of.
How Different was the Universe at z=1? Centre de Physique Théorique, Marseille Université de Provence Christian Marinoni.
A GALEX and NDWFS Investigation of Star Forming Galaxies at z=1 and 2 Charles G. Hoopes, Timothy M. Heckman (JHU) Buell T. Jannuzi, Arjun Dey, Michael.
Clustering of BzK-selected galaxies in the COSMOS field Xu KONG collaborators : A. Renzini, E. Daddi, N. Arimoto, A. Cimatti , COSMOS.
联 合 天 体 物 理 中 心 Joint Center for Astrophysics The half-light radius distribution of LBGs and their stellar mass function Chenggang Shu Joint Center for.
Galactic Astronomy 銀河物理学特論 I Lecture 3-2: Evolution of Luminosity Functions of Galaxies Seminar: Lily et al. 1995, ApJ, 455, 108 Lecture: 2011/12/12.
We created a set of volume limited samples taken from the 2dFGRS (Colless 2001) that contains about 250,000 galaxies with accurate redshifts, is relatively.
Mahdi Khadem Ferdowsi University of Mashhad Supervisors: Dr S. Arbabi (INO) Dr J. Ghanbari (FUM)
ZCOSMOS galaxy clustering: status and perspectives Sylvain de la Torre Marseille - June, 11th Clustering working group: Ummi Abbas, Sylvain de la Torre,
Budapest Group Eötvös University MAGPOP kick-off meeting Cassis 2005 January
Mass Profiles of Galaxy Clusters Drew Newman Newman et al. 2009, “The Distribution of Dark Matter Over Three Decades in Radius in the Lensing Cluster Abell.
AGN in the VVDS (Bongiorno, Gavignaud, Zamorani et al.) 1.What has been done: main results on Type 1 AGN evolution and accretion properties of faint AGN.
Photometric redshift for clusters through A1689 and simulation studies Stephanie Jouvel, Ofer Lahav, Ole Host.
1.4 GHz Source Counts (Hopkins 2000)
IES Cargesse – 18 September 2012
Extra-galactic blank field surveys with CCAT
Dynamics at high redshifts:
Presentation transcript:

Measuring the clustering of galaxies in COSMOS Measuring the clustering of galaxies in COSMOS Olivier Le Fèvre, LAM Why ? Why ? How ? correlation function How ? correlation function What has been done from other datasets ? What has been done from other datasets ? Toward a strategy for COSMOS Toward a strategy for COSMOS –Use the unique parameter space –Capitalize on morphology measurements

Clustering measurements: a unique tool Characterize mass assembly over time Characterize mass assembly over time Clustering is progressing following the underlying cosmology frame Clustering is progressing following the underlying cosmology frame Probing scales from ~10kpc to ~10-20Mpc Probing scales from ~10kpc to ~10-20Mpc Need large areas Need large areas Measure: Measure: –Correlation length r 0 –  =  0.6 /b –pair-wise velocity dispersion Caveat: tracing clustering with luminous matter Caveat: tracing clustering with luminous matter

Standard method Compute 2-point correlation function  (r p,  ) and projection w(r p ) Compute 2-point correlation function  (r p,  ) and projection w(r p ) Higher order statistics: a powerful tool in COSMOS field Higher order statistics: a powerful tool in COSMOS field 2DFGRS COSMOS-Subaru, Guzzo et al.

Constraints on COSMOS: what has been done before ? COSMOS do not need to repeat previous experiments COSMOS do not need to repeat previous experiments Many other datasets with deep multi- wavelength and/or HST morphology information exist Many other datasets with deep multi- wavelength and/or HST morphology information exist –Photo-z –Spectro-z –Wide fields / deep fields No other single daset with same wide field, depth AND HST morphology No other single daset with same wide field, depth AND HST morphology

Current measurements: VVDS VVDS-Deep VVDS-Deep 9000 spectroscopic redshifts, IAB= spectroscopic redshifts, IAB=24 0.7x0.7 deg², up to z~2 0.7x0.7 deg², up to z~2

VVDS cone: Galaxy density field, 6217 redshifts I AB  24 (C. Marinoni et al.) 2DFGRS/SDSS stop here z=0.5 z=0.6 z=0.7 z=1.3 z=0.8 z=0.9 z=1 z=1.1 z= Mpc 30Mpc COSMOS will be 3x larger scales

VVDS: measuring clustering evolution from z~2 Le Fèvre, Guzzo, et al., A&A, in press

Evolution of galaxy bias Marinoni, et al., A&A, submitted Clustering length Full population Clustering length per galaxy type

Strategy for clustering measurement with COSMOS Unique to COSMOS: bringing together depth, morphology, and wavelength selection, over a large contiguous field Unique to COSMOS: bringing together depth, morphology, and wavelength selection, over a large contiguous field Compute  (r,M( ),type,z) Compute  (r,M( ),type,z) –Photo-z –Spectro-z Probe the evolution of different types of galaxy populations Probe the evolution of different types of galaxy populations –Early types: when are they already in place in the densest environments ? –Star forming galaxies –Try to link populations in evolution scenario

key parameter at high-z: morphology Select large morphology-selected sub-samples Select large morphology-selected sub-samples –assume galaxies for a proper calculation of wp ACS-based ~3500A rest z~0.8: ACS-based ~3500A rest z~0.8: –~800,000 images: 1600 bins (z,type,M) NICMOS-based, ~1  m rest: NICMOS-based, ~1  m rest: –~20,000 images: 40 bins Need to train machine on eye classification Need to train machine on eye classification –Reference sample need to be defined for COSMOS

H-band NICMOS images: a very important dataset H band improves photo-z for z>1 H band improves photo-z for z>1 Compare ACS and NICMOS morphology measurements Compare ACS and NICMOS morphology measurements –Understand differences On-going work: Lidia Tasca et al. Paper for ApJ 1st release NICMOS tile originalGIM2D Model MaskResidual

Clustering analysis of COSMOS data for 1st ApJ release Evolution of the correlation function per morphological type: Evolution of the correlation function per morphological type: –I band selected to z~1.2 –H band selected to z~1.5 –Photometric redshifts Measurements at z~3-5 ? Measurements at z~3-5 ? –Need iteration on photometric catalog On-going work: Baptiste Meneux et al. Paper for 1st ApJ release

Select by ACS morphology early type late type irregulars Select by NICMOS morphology early type late type irregulars Select by apparent magnitude I band B band H band NUV (Galex) Spitzer microns Select by absolute magnitude / volume limited: UV to 1  m rest Two-point correlation function I. Photo-z: down to I~26 all galaxies selected from z~0 to z~1.2 selected populations: LBGs z~3-5, EROs II. Spectro-z: down to IAB~22.5 all galaxies from z~0 to z~1.2 (zCOSMOS-bright) all galaxies z~ (zCOSMOS-deep)

Photo-z: comparing different methods On-going work: O. Ilbert, L. Tasca, S. Arnouts Mobasher photo-z code Arnouts / Ilbert photo-z code