1 ARMA model Let ε t be white noise process, Z t be a stationary series. white noise : 純雜訊 ε t ~ NID( 0, σ 2 ) ARMA model 又稱為 Box-Jankin model , 1970 年代推出, 用來配適時間序列中的不規則震盪,適用於 Stationary series ,可解釋序列中的自相關現象。
2 AR(p), Autoregressive model with order p is defined as MA(p), Movingaverage model with order q is defined as ARMA(p,q), Autoregressive and movingaverage with order (p,q) is defined as 註: δ 是一 constant , 並不一定是 μ
3 註: 1 、 AR(p) model 可以下列式表示 (assume δ=0) : 2 、 MA(q) model 可以下列式表示: 3 、 ARMA(p,q) model 可以下列式表示: 是 B 的 p 次多項式, 是 B 的 q 次多項式,
4 MA(q) model Z t 之變異數及自相關係數: Movingaverage with order q: 由此得到參 數估計量 註: For MA(q) model , μ=δ
5 Z t 偏自相關係數 (partial autocorrelation) : For MA model , ACF cuts off after lag q, PACF dies down.
6 MA(1) model 由此得到估計量 theta Rho_ phi_ phi_ phi_ phi_
7
8 MA(2) model 由此得到 參數估計 量
9
10 AR(p) model Autoregressive with order p 此模式滿足平穩性的條件:係數使得方程式 的 根在單位圓外 Variance for AR(p) model Autocorrelation for AR(p) model
11 Partial Autocorrelation for AR(p) model 稱為 Yule-Walker 等式, 由此得到估計量 For AR model , ACF dies down, PACF cuts off after lag p.
12 Stationarity 之條件 ACF 呈指數下降,或波動下降; PACF 在 k=2 處切斷 註: AR(1) 過程又稱為馬可夫過程 (Markov process) 例: Z t = Z t-1 + ε t
13
14 Stationarity 之條件 Yule-Walker 等式 : 例: Z t = Z t Z t-2 + ε t
15
16
17 ARMA(p,q) model 若 q<= p ,則 ACF 遞減 ( damped exponentially or sine-wave ) 若 q > p ,前面 q-p+1 個 p 和其它的 p 呈二段式遞減
18 ACF 與 PACF 皆漸漸消失型 ( damped exponentially or sine-wave )
19
20 Table Behavior of the acf and pacf for ARMA model ModelacfPacf MA(q) 時差 q 之後切斷指數或正弦函數式漸漸消失 AR(p) 指數或正弦函數式漸漸消失時差 p 之後切斷 ARMA(p,q) 指數或正弦函數式漸漸消失