A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team.

Slides:



Advertisements
Similar presentations
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Advertisements

CO imaging surveys of nearby galaxies Nario Kuno Nobeyama Radio Observatory.
Our Galaxy `. Interstellar dust obscures our view at visible wavelengths along lines of sight that lie in the plane of the galactic disk.
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
A MOPRA CS(1-0) demonstration survey of the Galactic plane G. Fuller, N. Peretto, L. Quinn (University of Manchester UK), J. Green (ATNF ) All dust continuum.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
Loránt Sjouwerman, Ylva Pihlström & Vincent Fish.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
Constraining the Physics of Star Formation in Galaxies Using the JVLA and GBT Amanda Kepley NRAO - GB.
Heiles meeting, Sep 04 Where is the Atomic Carbon in Ophiuchus Di Li Paul Goldsmith Gary Melnick and SWAS team.
Mini Workshop on Star Formation and Astrochemistry. Barcelona, 2006 November 23 1 Robert Estalella, Aina Palau, Maite Beltrán (UB) Paul T. P. Ho (CfA),
Radio Astronomy And The Spiral Structure Of The Milky Way Jess Broderick Supervisor: Dr George Warr.
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
Molecular Clouds and Star Formation in the Magellanic Bridge and the SMC Yasuo Fukui, Norikazu Mizuno ( Nagoya University ) LMC SMC Magellanic Bridge Putman.
GLAST and NANTEN Molecular clouds as a probe of high energy phenomena Yasuo Fukui Nagoya University May 22, 2007 UCLA.
Submillimeter and IR Studies of Molecular Regions in the Magellanic Clouds Mónica Rubio Universidad de Chile CCAT Workshop, Koln, 5oct11.
Sub-mm/mm astrophysics: How to probe molecular gas
12 CO(1-0) emission in the Magellanic Clouds, according to Mopra (Also starring the Magellanic Bridge…) Erik Muller ATNF/CSIRO Collaborators so far: Juergen.
MX002: Molecular Gas in the LMC MX002 observers in 2005: Juergen Ott, Tony Wong, Erik Muller, Jorge Pineda, Min Wang, Annie Hughes.
Radio continuum, CO, and thermal infrared emission in nearby star-forming galaxies Tony Wong CSIRO Australia Telescope & University of New South Wales.
Dramatic change in environments of galaxy disks and intergalactic space Suzuki et al. (2007,2010a) M101 銀河 Suzuki et al. (2010b) M101 Stephan’s Quintet.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
The Impact of Dust on a Stellar Wind-Blown Bubbles Ed Churchwell & John Everett University of Wisconsin Oct , 2008Lowell Observatory Flagstaff, AZ.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
2005 June 2260th Symposium on Molecular Spectroscopy Outflows and Magnetic Fields in L1448 IRS3 Woojin Kwon Leslie W. Looney Richard M. Crutcher Jason.
1 Common Far-Infrared Properties of the Galactic Disk and Nearby Galaxies MNRAS 379, 974 (2007) Hiroyuki Hirashita Hiroyuki Hirashita (Univ. Tsukuba, Japan)
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
When  meets IR the clouds hiding behind the dust & cosmic rays Isabelle Grenier Jean-Marc Casandjian Régis Terrier AIM, Service d’Astrophysique, CEA Saclay.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
AS 4002 Star Formation & Plasma Astrophysics Supercritical clouds Rapid contraction. Fragmentation into subregions –Also supercritical if size R ≥ clump.
The Incredible 6.7 GHz Methanol Masers: A key to understanding high-mass star formation. Jimi Green (for Gary Fuller) CSIRO Astronomy & Space Science,
VLASS – Galactic Science Life cycle of star formation in our Galaxy as a proxy for understanding the Local Universe legacy science Infrared GLIMPSE survey.
SPIRE-FTS spectrum of Arp 220, Mrk 231 and NGC Bright CO (J = 4-3 to J = 13-12), water, and atomic fine-structure line transitions are labeled. The.
MAGMA: The Magellanic Mopra Assessment Tony Wong University of Illinois at Urbana-Champaign Collaborators: Annie Hughes (Swinburne/ATNF), Erik Muller (Nagoya.
Direct Physical Diagnostics of Triggered Star Formation Rachel Friesen NRAO Postdoctoral Fellow North American ALMA Science Center C. Brogan, R. Indebetouw,
Great Barriers in High Mass Star Formation, Townsville, Australia, Sept 16, 2010 Patrick Koch Academia Sinica, Institute of Astronomy and Astrophysics.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
Molecular Clouds in in the LMC at High Resolution: The Importance of Short ALMA Baselines T. Wong 1,2,4, J. B. Whiteoak 1, M. Hunt 2, J. Ott 1, Y.-N. Chin.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
Imaging Molecular Gas in a Nearby Starburst Galaxy NGC 3256, a nearby luminous infrared galaxy, as imaged by the SMA. (Left) Integrated CO(2-1) intensity.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Observations of the Large Magellanic Cloud with Fermi Jürgen Knödlseder (Centre d’Etude Spatiale des Rayonnements) On behalf of the Fermi/LAT collaboration.
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
Molecular gas and dust in the Magellanic Clouds C. Bot on behalf of Mónica Rubio Dusty, 29 oct 2004.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Methanol Masers in the NGC6334F Star Forming Region Simon Ellingsen & Anne-Marie Brick University of Tasmania Centre for Astrophysics of Compact Objects.
Molecular clouds in the center of M81 Viviana Casasola Observatoire de Paris-LERMA & Università di Padova, Dipartimento di Astronomia Scuola Nazionale.
AST101 Lecture 20 The Parts of the Galaxy. Shape of the Galaxy.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Probing the Birth of Super Star Clusters Kelsey Johnson University of Virginia Hubble Symposium, 2005.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno + many (NRO Legacy MAGiC team, ASTE team, AzTEC team) NRO UM.
Star Formation and H2 in Damped Lya Clouds
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Massive Star Formation under Different Z & Galactic Environment Rosie Chen (University of Virginia) Remy Indebetouw, You-Hua Chu, Robert Gruendl, Gerard.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
講義資料 2 京都大学大学院 2011 年 10 月 3-5 日 特別講義「電波天文学」 福井康雄 名古屋大学大学院 1.
AST101 Lecture 20 Our Galaxy Dissected. Shape of the Galaxy.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
The Structures on Sub-Jeans Scales, Fragmentation, and the Chemical Properties in Two Extremely Dense Orion Cores Zhiyuan Ren, Di Li (NAOC) and Nicolas.
1 SIMBA survey of southern high-mass star forming regions Santiago Faúndez (U. de Chile) Leonardo Bronfman(U. de Chile) Guido Garay (U. de Chile) Rolf.
Topic: “Ionized atomic lines in high-z galaxies” K. Kohno (IoA/RESCEU) Journal Club June 15 th, 2012 “Ionized nitrogen at high redshift”, Decarli et al.
Where and How Are Massive Stars Formed in Isolation? You-Hua Chu (U of Illinois) In collaboration with: R. Gruendl, R. Chen*, M. Gelman, M. Johnson (Illinois)
Herschel View of the Warm Molecular Gas in the LMC Star-forming region N159W Min-Young Lee CEA-Saclay, France Collaborators S. Madden, V. Lebouteiller,
Portrait of a Forming Massive Protocluster: NGC6334 I(N)
Molecular Gas Distribution of our Galaxy: NANTEN Galactic Plane Survey
Presentation transcript:

A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team

Large Magellanic Cloud Nearest galaxy ( ~ 50kpc) Nearest galaxy ( ~ 50kpc) We can resolve individual GMCs. We can resolve individual GMCs. Face-on Face-on less contamination along the line of sight less contamination along the line of sight Different environment from that of Our Galaxy Different environment from that of Our Galaxy Low metallicity (e.g., Dufour 1984), Low metallicity (e.g., Dufour 1984), High gas to dust ratio (Koornneef 1982), High gas to dust ratio (Koornneef 1982), High FUV field High FUV field Active star formation Active star formation 30 Doradus ~ 39 O3 stars (Massey & Hunter 1999) 30 Doradus ~ 39 O3 stars (Massey & Hunter 1999) Current formation of young massive star clusters (populous clusters) Current formation of young massive star clusters (populous clusters) ~ 10 4 stars (e.g., Hodge 1961) ~ 10 4 stars (e.g., Hodge 1961)

Purpose of this work Proto cluster condensation Proto cluster condensation Compact (<1pc), dense (10 4 /cc) and warm (50K) Compact (<1pc), dense (10 4 /cc) and warm (50K) Derive density, temperature and kinematics Derive density, temperature and kinematics ⇒ high resolution CO(J=3-2) Envelope of molecular clouds Envelope of molecular clouds In low metallicity, intense UV environment In low metallicity, intense UV environment CO → C → C + (PDR) CO → C → C + (PDR) ⇒ high resolution [CI] observation

Outline Results of CO(1-0) observations Results of CO(1-0) observations (NANTEN, SEST) ASTE CO(3-2) observations ASTE CO(3-2) observations ASTE [CI] observations ASTE [CI] observations Summary Summary

Molecular clouds in the LMC NANTEN 4m radio telescope 12 CO(1-0) : 115GHz 259 CO clouds (Mvir > 10 4 M sun ) Total molecular mass ~ 7×10 7 M sun Total ~ 27,000 points Contours; from 1.2Kkm/s intervals 2.4Kkm/s Reveal large scale distribution of GMCs in LMC Reveal large scale distribution of GMCs in LMC Complete sample of GMCs Complete sample of GMCs Need higher resolution observations to find individual proto cluster condensations Need higher resolution observations to find individual proto cluster condensations

Observations with SEST Diameter: 15m Line : 12 CO(J=1-0) Frequency: 115GHz Beam size: 44”(115GHz) ⇒ Tsys: 450K(115GHz) Vel. res.: 0.2 km/s (115GHz) Observation: Aug., 2001 Feb., 2002 Silla, Chile)

CO(3-2) Observations with ASTE Diameter : 10m Line : 12 CO(J=3-2) Frequency : 345GHz Beam size : 22”(345GHz) ⇒ Observing grid: 30”, 20”, 15”, 10” Tsys : 300K (DSB) Intg. Time : 30 – 240 sec. Vel. res. : 0.44km/s (wide-band mode) Observation : Oct la Bola, Chile)

Proto cluster condensation ? Cluster (Hunter et al. 2003) Cluster (Hunter et al. 2003) size D = 1pc size D = 1pc M * tot = 3×10 2 M sun M * tot = 3×10 2 M sun Star formation efficiency = 10% Star formation efficiency = 10%↓ M gas tot = 3×10 3 M sun M gas tot = 3×10 3 M sun dv = sqrt(M gas tot /(190×D/2)) = 5.62 km/s dv = sqrt(M gas tot /(190×D/2)) = 5.62 km/s M ~ 10 5 M sun, R ~ 10pc, dv ~ 7km/s (observed) M ~ 10 5 M sun, R ~ 10pc, dv ~ 7km/s (observed)

From ASTE CO(3-2) obs. Clump size ~ 10pc, Clump size ~ 10pc, Clump mass ~ 10 5 M sun Clump mass ~ 10 5 M sun Substructure -> proto cluster condensation Substructure -> proto cluster condensation I 3-2 /I Hα flux correlation I 3-2 /I Hα flux correlation From LVG analysis From LVG analysis Tkin > 120K, n(H 2 ) ~ 10 4 /cc (30Dor) Tkin > 120K, n(H 2 ) ~ 10 4 /cc (30Dor) Tkin > 70K, n(H 2 ) ~ 10 4 /cc (N159W) Tkin > 70K, n(H 2 ) ~ 10 4 /cc (N159W) Clumps near the HII regions/clusters are heated Clumps near the HII regions/clusters are heated

[CI] line Different environment from that of Our Galaxy Different environment from that of Our Galaxy Low metallicity (e.g. Dufour 1984) Low metallicity (e.g. Dufour 1984) High gas to dust ratio (Koornneef 1982) High gas to dust ratio (Koornneef 1982) High FUV field High FUV field↓ CO → C → C + CO → C → C + [CII] : strongly depend to FUV field [CII] : strongly depend to FUV field ( Stacy et al. 1991, Mochizuki et al ) [CI]/CO : no significant dependence to FUV field [CI]/CO : no significant dependence to FUV field ( Bolatto et al )

Johansson et al Dor -N159 region SEST CO(1-0) Bolatto et al white: CII (55”) black: CO (33”) color : CI (250”)

ASTE telescope ASTE telescope Sept., 2003 Sept., 2003 [CI] ( 3 P P 0 ) GHz [CI] ( 3 P P 0 ) GHz Beam size 15 ” Beam size 15 ” LMC(50kpc) LMC(50kpc) SMC(60kpc) SMC(60kpc) Observing grid Observing grid 30 ”, 20 ”, 15 ”, 7.5 ” 30 ”, 20 ”, 15 ”, 7.5 ” Velocity res. ~ 0.31km/s Velocity res. ~ 0.31km/s Tsys ~ K ( DSB ) Tsys ~ K ( DSB ) Intg. Time ~ 10min./on-position Intg. Time ~ 10min./on-position Tr.m.s. ~ 0.5K Tr.m.s. ~ 0.5K [CI] observations

From ASTE [CI] obs. [CI] [CI] Similar/weaker than the Galactic GMCs Similar/weaker than the Galactic GMCs 5 ~ 15km/s line width (larger than the Galactic GMCs) 5 ~ 15km/s line width (larger than the Galactic GMCs) N(C) : 0.8-3×10 17 cm -2 ( smaller than Orion ) N(C) : 0.8-3×10 17 cm -2 ( smaller than Orion ) N(C)/N( 13 CO) N(C)/N( 13 CO) No significant difference among 30Dor, N159W, N159S No significant difference among 30Dor, N159W, N159S Similar/larger than Orion Similar/larger than Orion

Summary CO(3-2) observations CO(3-2) observations Clump size is ~ 10pc, Clump size is ~ 10pc, Clump mass is ~ 10 5 M sun Clump mass is ~ 10 5 M sun ⇒ larger than cluster’s size and mass ⇒ substructure ⇒ higher resolution observations ⇒ compare to Spitzer data

R(3-2)/(1-0) - H α flux correlation R(3-2)/(1-0) - H α flux correlation From LVG analysis From LVG analysis Tkin > 120K, n(H 2 ) = 10 4±0.5 /cc (30Dor) Tkin > 120K, n(H 2 ) = 10 4±0.5 /cc (30Dor) Tkin > 70K, n(H 2 ) ~ 10 4 /cc (N159W) Tkin > 70K, n(H 2 ) ~ 10 4 /cc (N159W) ⇒ HII regions -> dust -> molecular gas ⇒ compare to dust temperature CO(3-2)/(1-0) sensitive to temperature CO(3-2)/(1-0) sensitive to temperature Determine density independently Determine density independently ⇒ 13 CO

[CI] Observations [CI] Observations [CI] [CI] Weaker than the Galactic GMCs Weaker than the Galactic GMCs 5 ~ 15km/s line width (larger than the Galactic GMCs) 5 ~ 15km/s line width (larger than the Galactic GMCs) N(C)/N( 13 CO) N(C)/N( 13 CO) N(C) : 0.8-3×10 17 cm -2 ( smaller than Orion ) N(C) : 0.8-3×10 17 cm -2 ( smaller than Orion ) No significant difference among 30Dor, N159W, N159S No significant difference among 30Dor, N159W, N159S Similar/larger than Orion Similar/larger than Orion ⇒ SMC ⇒ Detailed comparison LMC, SMC, Orion