MapReduce: Simplified Data Processing on Large Clusters J. Dean and S. Ghemawat (Google) OSDI 2004 Shimin Chen DISC Reading Group
Motivation: Large Scale Data Processing Process lots of data to produce other derived data Input: crawled documents, web request logs etc. Output: inverted indices, web page graph structure, top queries in a day etc. Want to use hundreds or thousands of CPUs but want to only focus on the functionality MapReduce hides messy details in a library: Parallelization Data distribution Fault-tolerance Load balancing
Outline Programming Model Implementation Refinements Evaluation Conclusion
Programming model Input & Output: each a set of key/value pairs Programmer specifies two functions: map (in_key, in_value) -> list(out_key, intermediate_value) Processes input key/value pair to generate intermediate pairs reduce (out_key, list(intermediate_value)) -> list(out_value) Given all intermediate values for a particular key, produces a set of merged output values (usually just one) Inspired by similar primitives in LISP and other functional languages
Example: Count word occurrences map(String input_key, String input_value): // input_key: document name // input_value: document contents for each word w in input_value: EmitIntermediate(w, "1"); reduce(String output_key, Iterator intermediate_values): // output_key: a word // output_values: a list of counts int result = 0; for each v in intermediate_values: result += ParseInt(v); Emit(AsString(result));
Looking at Actual Code (Appendix A) #include "mapreduce/mapreduce.h“ // User's map function class WordCounter : public Mapper { public: virtual void Map(const MapInput& input) { const string& text = input.value(); const int n = text.size(); for (int i = 0; i < n; ) { // Skip past leading whitespace while ((i < n) && isspace(text[i])) i++; // Find word end int start = i; while ((i < n) && !isspace(text[i])) i++; if (start < i) Emit(text.substr(start,i-start),"1"); } }; REGISTER_MAPPER(WordCounter);
// User's reduce function class Adder : public Reducer { virtual void Reduce(ReduceInput* input) { // Iterate over all entries with the // same key and add the values int64 value = 0; while (!input->done()) { value += StringToInt(input->value()); input->NextValue(); } // Emit sum for input->key() Emit(IntToString(value)); } }; REGISTER_REDUCER(Adder);
int main(int argc, char** argv) { ParseCommandLineFlags(argc, argv); MapReduceSpecification spec; // Store list of input files into "spec" for (int i = 1; i < argc; i++) { MapReduceInput* input = spec.add_input(); input->set_format("text"); input->set_filepattern(argv[i]); input->set_mapper_class("WordCounter"); } // Specify the output files: // /gfs/test/freq of-00100,/gfs/test/freq of MapReduceOutput* out = spec.output(); out->set_filebase("/gfs/test/freq"); out->set_num_tasks(100); out->set_format("text"); out->set_reducer_class("Adder"); // Optional: do partial sums within map tasks out->set_combiner_class("Adder"); // Tuning parameters spec.set_machines(2000); spec.set_map_megabytes(100); spec.set_reduce_megabytes(100); // Now run it MapReduceResult result; if (!MapReduce(spec, &result)) abort(); // Done: 'result' structure contains info about counters, time // taken, number of machines used, etc. return 0; }
More Examples Inverted index: word documents Map: parse each document, emits Reduce: emits Distributed grep Map: emits a line if input document match a given pattern Reduce: identity function Distributed sort Map: extracts key from each record, emits a Reduce: emits all pairs unchanged Relies on partitioning function and ordering guarantees (later in the talk)
MapReduce Jobs Run in August 2004 (Table 1)
Outline Programming Model Implementation Refinements Evaluation Conclusion
Implementation Overview Execution environment: Google cluster 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory 100 mbps or 1 gbps Ethernet, but limited (average) bisection bandwidth Storage is on local IDE disks GFS: distributed file system manages data Job scheduling system: jobs made up of tasks, scheduler assigns tasks to machines
Parallelization Map Divide the input into M equal-sized splits Each split is MB large Reduce Partitioning intermediate key space into R pieces hash(intermediate_key) mod R Typical setting: 2,000 machines M = 200,000 R = 5,000
Execution Overview M input splits of MB each Partitioning function hash(intermediate_key) mod R (0) mapreduce(spec, &result) R regions Read all intermediate data Sort it by intermediate keys
Timeline
More Details Master: Map task: state (idle/in-progress/completed), R file locations, worker machine Reduce task: state (idle/in-progress/completed), worker machine O(M+R) scheduling decisions, O(MR) space Locality preserving scheduling Schedule a map task close to the input location Prefer fine-grain tasks Dynamic load balancing Speeds up recovery
Fault Tolerance via Re-Execution On worker failure: Detect failure via periodic heartbeats Re-execute completed and in-progress map tasks Fine-grain: the completed tasks can be re-executed on multiple machines quickly Re-execute in progress reduce tasks Task completion committed through master Master failure: Could handle, but don't yet (master failure unlikely)
Outline Programming Model Implementation Refinements Evaluation Conclusion
Backup Tasks Problem: “straggler” A machine takes an unusually long time to complete one of the last few map or reduce tasks E.g. bad disk with frequent correctable errors; other jobs running; machine configuration problems etc. Near end of phase, master schedules backup executions of the remaining in-progress tasks Whichever one finishes first "wins"
Combiner Function Purpose: reduce data sent over network Combiner function: performs partial merging of intermediate data at the map worker Typically, combiner function == reducer function Requires commutative and associative E.g. word count
Skipping Bad Records Map/Reduce functions sometimes fail for particular inputs Best solution is to debug & fix, but not always possible On seg fault: Send UDP packet to master from signal handler Include sequence number of record being processed If master sees two failures for same record: Next worker is told to skip the record Effect: Can work around bugs in third-party libraries
Other Refinements Extensible input and output types Local execution for debugging Status web page User-defined counters Counter values returned to user code Displayed on status web page
Outline Programming Model Implementation Refinements Evaluation Conclusion
Setup Tests run on cluster of 1800 machines: 4 GB of memory Dual-processor 2 GHz Xeons with Hyperthreading Dual 160 GB IDE disks Gigabit Ethernet per machine Bisection bandwidth approximately 100 Gbps
Benchmarks Two benchmarks: GrepScan byte records to extract records matching a rare pattern (92K matching records) M=15,000 (input split size about 64MB) R=1 SortSort byte records (modeled after TeraSort benchmark) M=15,000 (input split size about 64MB) R=4,000
Locality optimization helps: 1800 machines read 1 TB of data at peak of ~31 GB/s Without this, rack switches would limit to 10 GB/s Startup overhead is significant for short jobs Total time about 150 seconds; 1 minute startup time Grep
Sort 44% longer 5% longer
Conclusion MapReduce has proven to be a useful abstraction Greatly simplifies large-scale computations at Google Fun to use: focus on problem, let library deal w/ messy details