5 October 20002nd ATLAS ROD Workshop1 The MROD The MDT Precision Chambers ROD Adriaan König University of Nijmegen.

Slides:



Advertisements
Similar presentations
TileCal Optical Multiplexer Board 9U VME Prototype Cristobal Cuenca Almenar IFIC (Universitat de Valencia-CSIC)
Advertisements

Peter JansweijerMROD Design Review: November 12, 2003Slide 1 MROD-1 Hardware Overview MRODin MRODout MROD-1 = 3 x MRODin + 1 x MRODout.
MROD IDR 12 Nov / JV 1 1.MROD-1 software 2.Testing 3.TigerSHARC in stead of the 21160?
A Gigabit Ethernet Link Source Card Robert E. Blair, John W. Dawson, Gary Drake, David J. Francis*, William N. Haberichter, James L. Schlereth Argonne.
CMS Week Sept 2002 HCAL Data Concentrator Status Report for RUWG and Calibration WG Eric Hazen, Jim Rohlf, Shouxiang Wu Boston University.
Alice EMCAL Meeting, July 2nd EMCAL global trigger status: STU design progress Olivier BOURRION LPSC, Grenoble.
DUAL-OUTPUT HOLA MAY 2011 STATUS Anton Kapliy Mel Shochet Fukun Tang.
RPC Electronics Status Overall system TDC –Digitizing frequency issue (determine the bin size of the TDC value) Discriminator test result Trigger module.
IO Controller Module Arbitrates IO from the CCP Physically separable from CCP –Can be used as independent data logger or used in future projects. Implemented.
DSP online algorithms for the ATLAS TileCal Read Out Drivers Cristobal Cuenca Almenar IFIC (University of Valencia-CSIC)
22 February 2001ATLAS MDT Electronics PDR1 The MROD The MDT Precision Chambers ROD Adriaan König University of Nijmegen.
26 February 2002ATLAS Muon Electronics Meeting1 MROD: the MDT Read Out Driver Status of MROD-1 Prototype Adriaan König University of Nijmegen.
11 November 2003ATLAS MROD Design Review1 The MROD The Read Out Driver for the ATLAS MDT Muon Precision Chambers Marcello Barisonzi, Henk Boterenbrood,
HCAL FIT 2002 HCAL Data Concentrator Status Report Gueorgui Antchev, Eric Hazen, Jim Rohlf, Shouxiang Wu Boston University.
5 Feb 2002Alternative Ideas for the CALICE Backend System 1 Alternative Ideas for the CALICE Back-End System Matthew Warren and Gordon Crone University.
MB, 9/8/041 Introduction to TDC-II and Address Map Mircea Bogdan (UC)
Straw electronics Straw Readout Board (SRB). Full SRB - IO Handling 16 covers – Input 16*2 links 400(320eff) Mbits/s Control – TTC – LEMO – VME Output.
September 22, 2005 ESF Workshop-Perugia 1 Virgo Control Electronic upgrade Annecy/Pisa/EGO B.Mours.
Trigger Supervisor (TS) J. William Gu Data Acquisition Group 1.TS position in the system 2.First prototype TS 3.TS functions 4.TS test status.
The GANDALF Multi-Channel Time-to-Digital Converter (TDC)  GANDALF module  TDC concepts  TDC implementation in the FPGA  measurements.
Peter JansweijerMROD Production Readiness Review: November 2, 2005Slide 1 Production Readiness Review of the MDT ROD Electronic Design Details.
Prototype Test of SPring-8 FADC Module Da-Shung Su Wen-Chen Chang 02/07/2002.
LECC2003 AmsterdamMatthias Müller A RobIn Prototype for a PCI-Bus based Atlas Readout-System B. Gorini, M. Joos, J. Petersen (CERN, Geneva) A. Kugel, R.
PicoTDC Features of the picoTDC (operating at 1280 MHz with 64 delay cells) Focus of the unit on very small time bins, 12ps basic, 3ps interpolation Interpolation.
Design and Performance of a PCI Interface with four 2 Gbit/s Serial Optical Links Stefan Haas, Markus Joos CERN Wieslaw Iwanski Henryk Niewodnicznski Institute.
LNL 1 SLOW CONTROLS FOR CMS DRIFT TUBE CHAMBERS M. Bellato, L. Castellani INFN Sezione di Padova.
Status of Global Trigger Global Muon Trigger Sept 2001 Vienna CMS-group presented by A.Taurok.
11th March 2008AIDA FEE Report1 AIDA Front end electronics Report February 2008.
CPT Week, April 2001Darin Acosta1 Status of the Next Generation CSC Track-Finder D.Acosta University of Florida.
Gueorgui ANTCHEVPrague 3-7 September The TOTEM Front End Driver, its Components and Applications in the TOTEM Experiment G. Antchev a, b, P. Aspell.
9 th Workshop on Electronics for LHC Experiments 2 October 2003 P. Antonioli (INFN/Bologna) A 20 ps TDC readout module for the Alice Time of Flight system:
1 VeLo L1 Read Out Guido Haefeli VeLo Comprehensive Review 27/28 January 2003.
Features of the new Alibava firmware: 1. Universal for laboratory use (readout of stand-alone detector via USB interface) and for the telescope readout.
28/03/2003Julie PRAST, LAPP CNRS, FRANCE 1 The ATLAS Liquid Argon Calorimeters ReadOut Drivers A 600 MHz TMS320C6414 DSPs based design.
Upgrade to the Read-Out Driver for ATLAS Silicon Detectors Atlas Wisconsin/LBNL Group John Joseph March 21 st 2007 ATLAS Pixel B-Layer Upgrade Workshop.
NA62 straw tracker readout status Georgios Konstantinou
LHCb front-end electronics and its interface to the DAQ.
1 07/10/07 Forward Vertex Detector Technical Design – Electronics DAQ Readout electronics split into two parts – Near the detector (ROC) – Compresses and.
Sep. 17, 2002BESIII Review Meeting BESIII DAQ System BESIII Review Meeting IHEP · Beijing · China Sep , 2002.
Kraków4FutureDaQ Institute of Physics & Nowoczesna Elektronika P.Salabura,A.Misiak,S.Kistryn,R.Tębacz,K.Korcyl & M.Kajetanowicz Discrete event simulations.
SoLiD/PVDIS DAQ Alexandre Camsonne. DAQ limitations Electronics Data transfer.
KLM Trigger Status Barrel KLM RPC Front-End Brandon Kunkler, Gerard Visser Belle II Trigger and Data Acquistion Workshop January 17, 2012.
S. Durkin, CMS EMU Meeting U.C. Davis Feb. 25, DMB Production 8-layer PC Board, 2 Ball-Grid Array FPGA’s, 718 Components/Board 550 Production Boards.
Peter LICHARD CERN (NA62)1 NA62 Straw tracker electronics Study of different readout schemes Readout electronics frontend backend Plans.
1 Level 1 Pre Processor and Interface L1PPI Guido Haefeli L1 Review 14. June 2002.
New DAQ at H8 Speranza Falciano INFN Rome H8 Workshop 2-3 April 2001.
ATLAS SCT/Pixel TIM FDR/PRR28 June 2004 TIM Requirements - John Lane1 ATLAS SCT/Pixel TIM FDR/PRR 28 June 2004 Physics & Astronomy HEP Electronics John.
3 Sep 2009SLM1 of 12 SLM performance and limitations based on HW tests.
S.Anvar, V.Gautard, H.Le Provost, F.Louis, K.Menager, Y.Moudden, B.Vallage, E.Zonca, on behalf of the KM3NeT consortium 1 IRFU/SEDI-CEA Saclay F
29 May 2009 Henk Boterenbrood, Augusto Ceccucci, Bjorn Hallgren, Mauro Piccini and Helmut Wendler 1 The Calorimeter Recorder CARE.
LECC2004 BostonMatthias Müller The final design of the ATLAS Trigger/DAQ Readout-Buffer Input (ROBIN) Device B. Gorini, M. Joos, J. Petersen, S. Stancu,
Rutherford Appleton Laboratory September 1999Fifth Workshop on Electronics for LHC Presented by S. Quinton.
Vladimir Zhulanov for BelleII ECL group Budker INP, Novosibirsk INSTR2014, Novosibirsk 2014/02/28 1.
ZHULANOV Vladimir Budker Institute of Nuclear Physics Novosibirsk, Russia Beijing
PC-based L0TP Status Report “on behalf of the Ferrara L0TP Group” Ilaria Neri University of Ferrara and INFN - Italy Ferrara, September 02, 2014.
The ALICE Data-Acquisition Read-out Receiver Card C. Soós et al. (for the ALICE collaboration) LECC September 2004, Boston.
Eric Hazen1 Ethernet Readout With: E. Kearns, J. Raaf, S.X. Wu, others... Eric Hazen Boston University.
ATLAS Pre-Production ROD Status SCT Version
Initial check-out of Pulsar prototypes
Production Firmware - status Components TOTFED - status
CMS EMU TRIGGER ELECTRONICS
Evolution of S-LINK to PCI interfaces
The Read Out Driver for the ATLAS Muon Precision Chambers
8-layer PC Board, 2 Ball-Grid Array FPGA’s, 718 Components/Board
Example of DAQ Trigger issues for the SoLID experiment
PID meeting Mechanical implementation Electronics architecture
Data Concentrator Card and Test System for the CMS ECAL Readout
FED Design and EMU-to-DAQ Test
HCAL DAQ Interface Eric Hazen Jim Rohlf Shouxiang Wu Boston University
Presentation transcript:

5 October 20002nd ATLAS ROD Workshop1 The MROD The MDT Precision Chambers ROD Adriaan König University of Nijmegen

5 October 20002nd ATLAS ROD Workshop2 Contents System Overview MROD-0 Prototype MROD-1 Prototype Performance Study FE Parameter Loading & Initialization Names

5 October 20002nd ATLAS ROD Workshop3 System Overview 6 x MROD 1.28 Gbit/s S-Link to ROB TDC 1 TDC 18 CSM 18 x TDC 1 TDC 18 CSM 18 x Chamber Tower

5 October 20002nd ATLAS ROD Workshop4 TDC Functionality 24 channels, 0.78 ns bin size entirely data driven: records time stamp for each hit (leading and/or trailing edges) stores hits in internal derandomizing buffer upon receipt of a L1A, it ouputs the relevant hit data words on a serial output link (40 Mbit/s) with header and trailer words

5 October 20002nd ATLAS ROD Workshop5 CSM Functionality Serial to Parallel & Clock Domain Separator 40 Mbit/s Data/Strobe from TDC 18 x Serial to Parallel & Clock Domain Separator 40 Mbit/s Data/Strobe from TDC Separator (S-Link)  1 Gbit/s 1 Start bit 32 Data bits 1 Parity bit 1 Stop bit ns = 875 ns 1 Separator word (S) 18 TDC data words 19 words in 875 ns  87 MB/s S 1 18 CSM

5 October 20002nd ATLAS ROD Workshop6 TDC0, word 1 TDC2, word 4 TDC3, word 2 TDC0, word 1 TDC1, word 3 TDC2, word 5 TDC3, word 3 TDC3, word 0TDC2, word 0TDC1, word 0 TDC1, word 1 TDC1, word 2 TDC2, word 1 TDC2, word 2 TDC2, word 3 TDC3, word 1 Build events in a partitioned memory from TDC data fragments (tdc 1) 000…000 Separator word Skip (do not store) Check (do not store) MROD Function time (tdc 0) 000…000 TDC0, word 0

5 October 20002nd ATLAS ROD Workshop7 MROD Throughput MROD 1.28 Gbit/s (  128 MB/s) MROD input MROD output Average 5 hits per TDC + header + trailer = 7 words/event Per tower of 6 chambers max. 88 TDCs * 7  600 words/event (= 2.4 kB/event) Worst case 100 kHz L1A rate  240 MB/s per MROD Calculation based on actual tower layout (J.Chapman): max. rate < 60 MB/s per MROD S-Link

5 October 20002nd ATLAS ROD Workshop8 MROD Form Factor 9 U VME board (single slot), 6 inputs, 1 output Optionally 2 extra inputs with “extension” board to accommodate special towers (> 6 chambers) S-link interfaces on main board SHARC II (ADSP21160), 2.5 x faster than MROD Crate contains: 12 MRODs (12  Segments) Max. 4 MROD Extension Boards 1 Standard (?) Crate Master with Ethernet Interface (DetDAQ) 1 TTC-Rx Interface Module 1 Busy Module ?? 1 DCS Interface Module 192 towers: 192/12 = 16 MROD Crates (1 per  Sector)

5 October 20002nd ATLAS ROD Workshop9 MROD-0 Prototype MRODOUT SHASLINK PCISHARC MRODIN MCRUSH sorted TDC-data over SHARC Link

5 October 20002nd ATLAS ROD Workshop10 1 MB ZBT Memory SHARC FPGA Data FIFO Tetris Register Input Output FIFOControl Control/Status Error signaling 6 Sharc 40 MB/s each FIFO Length FIFO MCRUSH MROD-0 Input Channel

5 October 20002nd ATLAS ROD Workshop11 MROD-0 Output Channel SHaSLINK PCI 9054 SHARC Altera 10K10A 160 MB/s 6 SHARC 40 MB/s each PCI bus

5 October 20002nd ATLAS ROD Workshop12 (SHARC)

5 October 20002nd ATLAS ROD Workshop13 MROD -1 Prototype Memory SHARC FPGA SHARC (2x) Memory FPGA 3x ( in total ) VME64x TTC Interface Memory SHARC FPGA Memory FPGA Sharc Links

5 October 20002nd ATLAS ROD Workshop14 SHARC-II

5 October 20002nd ATLAS ROD Workshop15 The ADSP and the ADSP SHARCs 40 MHz / 80  100 MHz CPU (SIMD mode) 512 KB / 512 KB internal memory 6 x 40 / 80  100 MB/s links. Throughput of all links simultaneously is 160 / 480  600 (?) MB/s, without disturbing the CPU. No handshaking on links, but hardware XON-XOFF protocol, 10 / 14 DMA channels Support for bus arbitration: at max. 6 SHARCs can be connected to a common bus without glue logic. Each SHARC can access the internal memories of each other SHARC. The SHARCs also provide support for a so-called host interface, which can act as an additional master on the common bus. Fast interrupt servicing due to the presence of shadow registers Two 40 Mbit/s / 40  50 Mbit/s (at max.) synchronous serial ports Can be booted via link 4

5 October 20002nd ATLAS ROD Workshop16 MROD-1 Form Factor 9 U VME board, 6 inputs, 1 output S-link interfaces on daughter boards SHARC II (ADSP21160), 2 x faster than (3 for input, 2 for output processing) Altera APEX FPGAs, 200k gates TTC interface (over back plane) VME64x interface Motherboard Output Input S-link daughter boards

5 October 20002nd ATLAS ROD Workshop17 MROD-1 Status & Planning VHDL design of FPGAs almost finished. Modules available by 1 st April Extensive tests and performance measurements at NIKHEF. System integration tests with CSM. System integration tests with ROB and DAQ test set-up (possibly in test-beam). Read out of BOL test stand at NIKHEF.

5 October 20002nd ATLAS ROD Workshop18 MROD Performance Study MRODIN MROD MRODOUT CSM ROB CSM

5 October 20002nd ATLAS ROD Workshop19 MROD Emulation Hardware MRODOUTROBIN ROBSIM SHASLINKCRUSHSHASLINK PCISHARC S-Link (PCI-)interface to host PC Module type xxxxx SHARC-link CSMSIM SHASLINK MRODIN (3x) MCRUSH RoIRR RoIR/ T2DR RoID/ T2OD MROD TDC- data fragment lengths sorted TDC- data sorted + merged TDC-data sorted TDC- data optionally double/triple MRODIN output thus simulating 2 or 3 MRODINs event fragment lengths via SHARC-link simulates future MROD-1 functionality Region-of-Interest Requests, Decision Records, etc., everything needed to run a ROBIN simulation 13

5 October 20002nd ATLAS ROD Workshop20 MRODOUTROBIN ROBSIMCSMSIMMRODIN MROD

5 October 20002nd ATLAS ROD Workshop21 MRODOUTROBIN ROBSIMCSMSIMMRODIN MROD Performance Study Results

5 October 20002nd ATLAS ROD Workshop22 MRODOUTROBIN ROBSIMCSMSIMMRODIN MROD Performance Study Results

5 October 20002nd ATLAS ROD Workshop23 MRODOUTROBIN ROBSIMCSMSIMMRODIN MROD Performance Study Results

5 October 20002nd ATLAS ROD Workshop24 MRODOUTROBIN ROBSIMCSMSIMMRODIN MROD Performance Study Results

5 October 20002nd ATLAS ROD Workshop25 MRODOUTROBIN ROBSIMCSMSIMMRODIN MROD Performance Study Results

5 October 20002nd ATLAS ROD Workshop26 MROD Performance Analysis Measured event rate for single output 40 MHz with 3 input channels: event rate  min(50,1000/(10 + #words-per-CSM/6) kHz. MROD-1 uses 80 MHz: both processing speed and bandwidth increase proportionately  event rate  100 kHz ? ‘Final’ MROD:  100 MHz.

5 October 20002nd ATLAS ROD Workshop27 FE parameter loading/initialization TTC TDCs ASDs CSMMRODROB DCS MDT-DAQ JTAG routing: Mezzanine boards

5 October 20002nd ATLAS ROD Workshop28 JTAG Usage Initialize/Set/Reset ASD/TDC/CSM parameters Reload CSM Flash Memory (if/when needed) Calibration sequence: 1: JTAG enables calibration pulses in the ASD 2: TTC signals the CSM to send a test pulse 3: TTC provides calibration trigger  No calibration during regular data taking.

5 October 20002nd ATLAS ROD Workshop29 MROD Names (NIKHEF and Univ.of Nijmegen) Henk Boterenbrood Peter Jansweijer Gerard Kieft Adriaan König Jos Vermeulen Thei Wijnen NN (Post-doc vacancy at Univ.of Nijmegen: