Quasi-normal Modes Prefer Supersymmetry? Yi Ling ( 凌 意) ITP, Chinese Academy of Sciences Dec.26, 2003 Y. Ling and H. Zhang, gr-qc/ , Phys.Rev.D101501®
Quasi-normal Modes Prefer Supersymmetry? Statistical entropy of black holes from loop quantum gravity Quantum geometry of spacetime Counting the microstates of black holes Fixing the Immirzi parameter by quasinormal modes of black holes Asymptotical behavior of quasinormal mode spectrum Bohr’s correspondence principle Loop quantization of N=1 supergravity
Ashtekar-Sen Variables Ashtekar-Sen variables a: SU(2) index
Discreteness of Quantum Geometry Microscopic version of space
Spin Networks Spin networks j 1 j 2 j 3 v 1
Discreteness of Quantum Geometry Area spectrum A free parameter j Immirzi parameter
Statistical Entropy of Black Holes Bekenstein-Hawking entropy
The most probable distribution The area of discrete horizon Discrete Horizons From Quantum Geometry
Counting the Number of Microstates of Quantum Gravity The entropy of discrete horizon Statistical principle : for su(2)
Fixing the Immirzi Parameter Quasi-normal mode spectrum Compact system: normal modes Open system: quasi-normal modes
Fixing the Immirzi Parameter Quasinormal modes of Schwarzschild black holes
Fixing the Immirzi Parameter Asymptotical behavior of quasinormal modes Bohr’s correspondence principle
Fixing the Immirzi Parameter Quantum GR
Loop quantization of N=1 supergravity Area spectrum in N=1 supergravity
Loop quantization of N=1 supergravity Remarks
Loop quantization of N=1 supergravity
Thank You