Lecture 12: Projection CS4670: Computer Vision Noah Snavely “The School of Athens,” Raphael.

Slides:



Advertisements
Similar presentations
Single-view Metrology and Camera Calibration
Advertisements

The Camera : Computational Photography Alexei Efros, CMU, Fall 2006.
CS 691 Computational Photography Instructor: Gianfranco Doretto 3D to 2D Projections.
Three-Dimensional Viewing Sang Il Park Sejong University Lots of slides are stolen from Jehee Lee’s.
Computer Vision CS 776 Spring 2014 Cameras & Photogrammetry 1 Prof. Alex Berg (Slide credits to many folks on individual slides)
Paris town hall.
The Camera CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2014.
Projection Readings Szeliski 2.1. Projection Readings Szeliski 2.1.
Image formation and cameras CSE P 576 Larry Zitnick Many slides courtesy of Steve Seitz.
Camera Models A camera is a mapping between the 3D world and a 2D image The principal camera of interest is central projection.
Modeling Light : Rendering and Image Processing Alexei Efros.
Announcements. Projection Today’s Readings Nalwa 2.1.
Lecture 5: Projection CS6670: Computer Vision Noah Snavely.
Announcements Mailing list (you should have received messages) Project 1 additional test sequences online Talk today on “Lightfield photography” by Ren.
CS485/685 Computer Vision Prof. George Bebis
Lecture 5: Cameras and Projection CS6670: Computer Vision Noah Snavely.
Image Formation1 Projection Geometry Radiometry (Image Brightness) - to be discussed later in SFS.
Computer Vision - A Modern Approach
CSCE641: Computer Graphics Image Formation Jinxiang Chai.
Announcements Mailing list Project 1 test the turnin procedure *this week* (make sure it works) vote on best artifacts in next week’s class Project 2 groups.
Lecture 13: Projection, Part 2
Lecture 4a: Cameras CS6670: Computer Vision Noah Snavely Source: S. Lazebnik.
Lecture 6: Image Warping and Projection CS6670: Computer Vision Noah Snavely.
The Pinhole Camera Model
Single-view Metrology and Camera Calibration Computer Vision Derek Hoiem, University of Illinois 02/26/15 1.
The Camera : Computational Photography Alexei Efros, CMU, Fall 2008.
CSCE 641: Computer Graphics Image Formation & Plenoptic Function Jinxiang Chai.
Cameras, lenses, and calibration
Image formation and cameras
Perspective projection
Cameras CSE 455, Winter 2010 January 25, 2010.
EEM 561 Machine Vision Week 10 :Image Formation and Cameras
Lecture 14: Projection CS4670 / 5670: Computer Vision Noah Snavely “The School of Athens,” Raphael.
776 Computer Vision Jan-Michael Frahm Fall Camera.
CPSC 641: Computer Graphics Image Formation Jinxiang Chai.
Recap from Wednesday Two strategies for realistic rendering capture real world data synthesize from bottom up Both have existed for 500 years. Both are.
776 Computer Vision Jan-Michael Frahm, Enrique Dunn Spring 2013.
Single-view Metrology and Camera Calibration Computer Vision Derek Hoiem, University of Illinois 01/25/11 1.
CS559: Computer Graphics Lecture 9: Projection Li Zhang Spring 2008.
Computational Photography Derek Hoiem, University of Illinois
CS-498 Computer Vision Week 7, Day 2 Camera Parameters Intrinsic Calibration  Linear  Radial Distortion (Extrinsic Calibration?) 1.
CSE 185 Introduction to Computer Vision Cameras. Camera models –Pinhole Perspective Projection –Affine Projection –Spherical Perspective Projection Camera.
Projection Readings Nalwa 2.1 Szeliski, Ch , 2.1
1 Chapter 2: Geometric Camera Models Objective: Formulate the geometrical relationships between image and scene measurements Scene: a 3-D function, g(x,y,z)
Jinxiang Chai CSCE 441 Computer Graphics 3-D Viewing 0.
More with Pinhole + Single-view Metrology
Image Formation and Cameras CSE 455 Linda Shapiro 1.
CS559: Computer Graphics Lecture 9: 3D Transformation and Projection Li Zhang Spring 2010 Most slides borrowed from Yungyu ChuangYungyu Chuang.
Announcements Project 1 grading session this Thursday 2:30-5pm, Sieg 327 –signup ASAP:signup –10 minute slot to demo your project for a TA »have your program.
Example: warping triangles Given two triangles: ABC and A’B’C’ in 2D (12 numbers) Need to find transform T to transfer all pixels from one to the other.
Lecture 14: Projection CS4670 / 5670: Computer Vision Noah Snavely “The School of Athens,” Raphael.
Lecture 18: Cameras CS4670 / 5670: Computer Vision KavitaBala Source: S. Lazebnik.
Outline 3D Viewing Required readings: HB 10-1 to 10-10
CSE 185 Introduction to Computer Vision
CS5670: Computer Vision Lecture 9: Cameras Noah Snavely
Jan-Michael Frahm Fall 2016
The Camera : Computational Photography
Announcements Project 1 Project 2
CSCE 441 Computer Graphics 3-D Viewing
CS 790: Introduction to Computational Vision
CS4670 / 5670: Computer Vision Lecture 12: Cameras Noah Snavely
Lecture 13: Cameras and geometry
Lecturer: Dr. A.H. Abdul Hafez
The Camera : Computational Photography
Announcements Midterm out today Project 1 demos.
Projection Readings Nalwa 2.1.
Credit: CS231a, Stanford, Silvio Savarese
Projection Readings Szeliski 2.1.
Announcements Midterm out today Project 1 demos.
Presentation transcript:

Lecture 12: Projection CS4670: Computer Vision Noah Snavely “The School of Athens,” Raphael

Reading Szeliski

Pinhole camera Add a barrier to block off most of the rays – This reduces blurring – The opening known as the aperture – How does this transform the image?

Shrinking the aperture

Adding a lens A lens focuses light onto the film – There is a specific distance at which objects are “in focus” other points project to a “circle of confusion” in the image – Changing the shape of the lens changes this distance “circle of confusion”

The eye The human eye is a camera – Iris - colored annulus with radial muscles – Pupil - the hole (aperture) whose size is controlled by the iris – What’s the “film”? –photoreceptor cells (rods and cones) in the retina

Projection

Müller-Lyer Illusion

Modeling projection The coordinate system – We will use the pinhole model as an approximation – Put the optical center (Center Of Projection) at the origin – Put the image plane (Projection Plane) in front of the COP Why? – The camera looks down the negative z axis we need this if we want right-handed-coordinates

Modeling projection Projection equations – Compute intersection with PP of ray from (x,y,z) to COP – Derived using similar triangles (on board) We get the projection by throwing out the last coordinate:

Modeling projection Is this a linear transformation? Homogeneous coordinates to the rescue! homogeneous image coordinates homogeneous scene coordinates Converting from homogeneous coordinates no—division by z is nonlinear

Perspective Projection Projection is a matrix multiply using homogeneous coordinates: divide by third coordinate This is known as perspective projection The matrix is the projection matrix (Can also represent as a 4x4 matrix – OpenGL does something like this)

Perspective Projection How does scaling the projection matrix change the transformation?

Orthographic projection Special case of perspective projection – Distance from the COP to the PP is infinite – Good approximation for telephoto optics – Also called “parallel projection”: (x, y, z) → (x, y) – What’s the projection matrix? Image World

Variants of orthographic projection Scaled orthographic – Also called “weak perspective” Affine projection – Also called “paraperspective”

Figures © Stephen E. Palmer, 2002 Dimensionality Reduction Machine (3D to 2D) 3D world 2D image What have we lost? Angles Distances (lengths) Slide by A. Efros

Projection properties Many-to-one: any points along same ray map to same point in image Points → points Lines → lines (collinearity is preserved) – But line through focal point projects to a point Planes → planes (or half-planes) – But plane through focal point projects to line

Projection properties Parallel lines converge at a vanishing point – Each direction in space has its own vanishing point – But parallels parallel to the image plane remain parallel