NEMO-3 Experiment Neutrino Ettore Majorana Observatory

Slides:



Advertisements
Similar presentations
NEMO-3 experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Coseners House, Abingdon.
Advertisements

SuperNEMO Thoughts about next generation NEMO experiment Ruben Saakyan UCL.
Double Beta Decay review
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Vladimir Vasiliev, UCL 2-6 May ’06, Stockholm on behalf of NEMO and SuperNEMO collaborations NEMO.
 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.
M. Dracos 1 Double Beta experiment with emulsions?
Low radioactivity at the Modane Underground Laboratory
The SuperNEMO experiment A very low background experiment Jérémy ARGYRIADES, LAL Orsay.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Double Beta Decay Present and Future
First results from NEMO 3 Experiment V. Vasiliev (ITEP), H. Ohsumi (Saga) and Ch. Marquet Nara, Japan, June 2003 NEMO collaboration.
Double beta search : experimental view Laurent SIMARD, LAL - Orsay 6 th Rencontres du Vietnam, Hanoi, 6 th -12 nd August 2006.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
ZSJ IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymentach NEMO-3 i SuperNEMO Kraków,
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
19 July 2012Page 1 Neutrino Mass Julia Sedgbeer High Energy Physics, Blackett Laboratory.
SuperNEMO Simulations Darren Price University of Manchester July, 2005.
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
Double beta decay and neutrino physics Osaka University M. Nomachi.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
Probing neutrino mass with SuperNEMO Ruben Saakyan Ulisse at LSM Workshop 30 June 2008.
Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,
Neutrino Ettore Majorana Observatory
Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D.
 decay:Present and Future Ruben Saakyan UCL 8 November 2004 Manchester University Particle Physics seminar PREVIEW Motivation Present status Status of.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Zakład Spektroskopii Jądrowej IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymencie NEMO-3 Warszawa,
1 TAUP - September 7, 2015S. Blot Investigating ββ decay with NEMO-3 and SuperNEMO Summer Blot, on behalf of the NEMO-3 and SuperNEMO experiments 7 September.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
Ultra-low background gamma spectrometry 2 nd LSM-Extension Workshop, Valfréjus, 16 October 2009 Pia Loaiza Laboratoire Souterrain de Modane.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
NEMO3 analysis and SuperNEMO development Benjamin Richards D14.
ILIAS JRA2 : WG1+WG2 Se82, production and purification Cascina, November 3rd, 2005Dominique Lalanne.
Neutrino Ettore Majorana Observatory
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Pia Loaiza AARM-Berkeley March 2010
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
June INPC20071 Study of 48 Ca double beta decay with CANDLES OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
09/04/2006NDM061 CANDLES for the study of 48 Ca double beta decay OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
V. Egorov. JINR + LSM V. Egorov = The love story 1991 Orsay S.Jullian and D.Lalanne proposed to bring our 2β-spectrometer to Modane 1993 TGV.
0νDBD Experimental Review and 136 Xe With HP Gas at CJPL 季向 东.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
SuperNEMO collaboration
Measurement of surface radioactivity by Alpha/Beta detection
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
SuperNEMO 1st Report to Oversight Committee
Nu_2-WP3: R&D for neutrinoless double beta decay experiments
Search for 0nbb decay with SuperNEMO
of double beta decay experiments (outside of Japan)
• • • Ge measurements for SuperNEMO
Double Beta experiment using nuclear emulsions?
Double Beta experiment with emulsions?
Presentation transcript:

NEMO-3 Experiment Neutrino Ettore Majorana Observatory RESULTS OF NEMO3 & SUPERNEMO Laurent Simard 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux, France Charles University, Praha, Czech Republic CTU, Praha, Czech Republic FES University, Morocco INEEL, Idaho Falls, USA IReS, IN2P3-CNRS et Université de Strasbourg, France ITEP, Moscou, Russia JINR, Dubna, Russia Jyvaskyla University, Finland Kharkov University, Ukrain 1 LAL, IN2P3-CNRS et Université Paris-Sud, France LSCE, CNRS Gif sur Yvette, France LPC, IN2P3-CNRS et Université de Caen, France Manchester University, United Kingdom Mount Holyoke College, USA University of Osaka, Japan RRC Kurchatov Institute, Moscow, Russia Saga University, Saga, Japan University of Texas, USA UCL, London, United Kingdom Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

Plan of the talk: Results of NEMO-3 experiment NEMO-3 Detector Measurement of bb2n decay for several nuclei Search for bb0n decay with 100Mo and 82Se Description of future projects The SUPERNEMO project other projects

Fréjus Underground Laboratory : 4800 m.w.e. The NEMO3 detector 3 m 4 m B (25 G) 20 sectors Fréjus Underground Laboratory : 4800 m.w.e. Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water (ext. wall) 40 cm wood (top and bottom) (since march 2004: water + boron) Source: 10 kg of  isotopes cylindrical, S = 20 m2, e ~ 60 mg/cm2 Tracking detector: drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H2O Calorimeter: 1940 plastic scintillators coupled to low radioactivity PMTs Able to identify e-, e+, g and a Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

PMTs scintillators Cathodic rings Wire chamber Calibration tube bb isotope foils Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

AUGUST 2001 Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

Start taking data 14 February 2003 NEMO-3 Opening Day, July 2002 Start taking data 14 February 2003 Water tank wood coil Iron shield Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

bb decay isotopes in NEMO-3 detector bb2n measurement 116Cd 405 g Qbb = 2805 keV 96Zr 9.4 g Qbb = 3350 keV 150Nd 37.0 g Qbb = 3367 keV 48Ca 7.0 g Qbb = 4272 keV 130Te 454 g Qbb = 2529 keV External bkg measurement 100Mo 6.914 kg Qbb = 3034 keV 82Se 0.932 kg Qbb = 2995 keV natTe 491 g Cu 621 g bb0n search (All the enriched isotopes produced in Russia) Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

bb events selection in NEMO-3 Deposited energy: E1+E2= 2088 keV Internal hypothesis: (Dt)mes –(Dt)theo = 0.22 ns Common vertex: (Dvertex) = 2.1 mm Vertex emission (Dvertex)// = 5.7 mm Transverse view Longitudinal view Run Number: 2040 Event Number: 9732 Date: 2003-03-20 Criteria to select bb events: 2 tracks with charge < 0 2 PMT, each > 200 keV PMT-Track association Common vertex Internal hypothesis (external event rejection) No other isolated PMT (g rejection) No delayed track (214Bi rejection) bb events selection in NEMO-3 Typical bb2n event observed from 100Mo Transverse view Run Number: 2040 Event Number: 9732 Date: 2003-03-20 Longitudinal view 100Mo foil 100Mo foil Geiger plasma longitudinal propagation Drift distance Scintillator + PMT Trigger: 1 PMT > 150 keV 3 Geiger hits (2 neighbour layers + 1) Trigger rate = 7 Hz bb events: 1 event every 1.5 minutes Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

2e- event e-Neventto measure l   e+ – e- pair event B rejection   -  (delay track) event 214Bi  214Po  210Pb

Expected Performance of the detector Time Of Flight: Time Resolution (bb channel)  250 ps at 1 MeV ToF (external crossing e- ) > 3 ns external crossing e- totaly rejected External Background bb events from the foil (Dtmes – Dtcalc) external hypo. (ns) (Dtmes – Dtcalc) internal hypo. (ns) Calorimeter: 97% of the PMTs+scintillators are ON Energy Resolution: calibration runs (every ~ 40 days) with 207Bi sources 17% 14% FWHM (1 MeV) Int. Wall 3" PMTs Ext. Wall 5" PMTs 207Bi 2 conversion e- 482 keV and 976 keV 482 keV 976 keV FWHM = 135 keV (13.8%) Daily Laser Survey to control gain stability of each PM gamma: efficiency ~ 50 % @ 500 keV, Ethr = 30 keV Tracking Detector: 99.5 % Geiger cells ON Vertex resolution: 2 e- channels (482 and 976 keV) using 207Bi sources at 3 well known positions in each sector s (DVertex) = 0.6 cm s// (DVertex) = 1.3 cm (Z=0) e+/e- separation with a magnetic field of 25 G ~ 3% confusion at 1 MeV b- DVertex DVertex = distance between the two vertex Expected Performance of the detector has been reached Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

Measurement of 2b2n decay in NEMO-3 Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

100Mo 22 preliminary results (Data 14 Feb. 2003 – 22 Sep. 2004) Sum Energy Spectrum Angular Distribution NEMO-3 219 000 events 6914 g 389 days S/B = 40 NEMO-3 219 000 events, S/B =40 6914 g, 389 days 100Mo 100Mo Data 22 Monte Carlo Data Background subtracted 22 Monte Carlo Background subtracted 7.37 kg.y T1/2 = 7.11 ± 0.02 (stat) ± 0.54 (syst)  1018 y Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

22 preliminary results for other nuclei NEMO-3 932 g 241.5 days 2385 events S/B = 3.3 Background subtracted 82Se 82Se T1/2 = 9.6 ± 0.3 (stat) ± 1.0 (syst)  1019 y 116Cd T1/2 = 2.8 ± 0.1 (stat) ± 0.3 (syst)  1019 y 150Nd T1/2 = 9.7 ± 0.7 (stat) ± 1.0 (syst)  1018 y 96Zr T1/2 = 2.0 ± 0.3 (stat) ± 0.2 (syst)  1019 y NEMO-3 405 g 168.4 days 1371 events S/B = 7.5 NEMO-3 37 g 168.4 days 449 events S/B = 2.8 NEMO-3 5.3 g 168.4 days 72 events S/B = 0.9 116Cd 150Nd 96Zr Data Data Data bb2n simulation bb2n simulation bb2n simulation E1+E2 (MeV) E1+E2 (MeV) E1+E2 (MeV) Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

Search for 2b0n decay in NEMO-3 Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

bb0n Analysis: Background Measurement NEMO-3 can measure each component of its background ! External Background 208Tl (PMTs) Measured with (e-, g) external events ~ 10-3 bb0n-like events year-1 kg -1 with 2.8<E1+ E2<3.2 MeV External Neutrons and High Energy gamma Measured with crossing e- or (e-,e+)int events with E1+E2 > 4 MeV  0.05 bb0n-like events year-1 kg -1 with 2.8<E1+ E2<3.2 MeV 208Tl impurities inside the foils ~ 60 mBq/kg Measured with (e-,2g), (e-,3g) events coming from the foil ~ 0.06 bb0n-like events year-1 kg -1 with 2.8<E1+ E2<3.2 MeV Radon background suppressed by a factor 10 in Dec. 2004 with a radon-free air purification system Radon inside NEMO-3 detector Measured with (e-,g,a) events from the gas or the foil ~ 1 bb0n-like events year-1 kg -1 with 2.8<E1+ E2<3.2 MeV 100Mo bb2n decay T1/2 = 7.14 1018 y ~ 0.3 bb0n-like events year-1 kg -1 with 2.8<E1+E2<3.2 MeV

Limit on the effective mass of the Majorana neutrino Phase 1 (Feb. 2003 – Sept. 2004: 1.08 y of data) with radon bkg (limits @ 90% CL) 100Mo Previous limits: T1/2(bb0n) > 5.5 1022 y Ejiri et al. (2001) 100Mo (6.914 kg) T1/2(bb0n) > 4.6 1023 y mn < 0.66 – 2.81 eV [2.8-3.2] MeV: e(bb0n) = 8 % Expected bkg = 8.1 ± 1.3 Nobserved = 7 events Nuclear Matrice Elements Ref: Simkovic (1999), Stoica (2001), Suhonen (1998,2003), Rodin (2005), Caurier (1996) 82Se Previous limits: T1/2(bb0n) > 9.5 1021 y Arnold et al. (1992) 82Se (0.932 kg) T1/2(bb0n) > 1.0 1023 y mn < 1.75 – 4.86 eV [2.7-3.2] MeV: e(bb0n) = 13 % Expected bkg = 3.1 ± 0.6 Nobserved = 5 events Cu+natTe+130Te In agreement with only Radon bkg expected

Limit on Majoron and on V+A (limits @ 90% CL) 100Mo: T1/2 (bb0nM) > 1.8 1022 y 82Se: T1/2 (bb0nM) > 1.5 1022 y gM < (5.3 – 8.5) 10-5 (best limit) gM < (0.7 – 1.6) 10-4 Simkovic (1999), Stoica (1999) Simkovic (1999), Stoica (2001) Limit on V+A 100Mo: T1/2 (bb0n V+A) > 2.3 1023 y 82Se: T1/2 (bb0n V+A) > 1.0 1023 y l < (1.5 – 2.0) 10-6 l < 3.2 10-6 Tomoda (1991), Suhonen (1994) Tomoda (1991)

Free-Radon Purification System in construction Radon was the dominant background for NEMO-3 Today: A(222Rn) in the LSM ~ 15 Bq/m3 Factor ~ 10 too high May 2004 : Tent surrounding the detector May 2004 August 2004 : Radon-free SuperKamiokande-like Air Factory Expected activity: A(222Rn) ~ 0.2 Bq/m3 150 m3/h 2 x 450 kg charcoal @ -40oC Expected Purification Factor ~ 75 Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

Radon-free air factory Activity: A(222Rn) < 1 mBq/m3 !!! Starts running on October 2004 the 4th In Laboratoire Souterrain de Modane 2 x 450 kg charcoal @ -50oC, 7 bars Activity: A(222Rn) < 1 mBq/m3 !!! Flux: 125 m3/h

After installation of radon-free air factory (active charcoal) 222Rn Activity between february 2003 and september 2004 ~ 0.95 Bq 40 Time (days) 17 now ~ 0.1 Bq (réduction by a factor ~ 10) Only 0.7 evt/y of background for bb0n of 100Mo < Nbdf due to bb2n

NEMO-3 Expected sensitivity Background External Background: negligible Internal Background: 208Tl : 60 Bq/kg for 100Mo 300 Bq/kg for 82Se 214Bi : < 300 Bq/kg ~ 0.1 count kg1 y 1 with 2.8<E1+E2<3.2 MeV  100Mo T1/2 = 7.14 1018 y ~ 0.3 count kg1 y 1 with 2.8<E1+E2<3.2 MeV in 2009 after 5 years of data 6914 g of 100Mo T1/2() 2 1024 y (90% C.L.) m < 0.32 – 1.35 eV 932 g of 82Se T1/2() 8 .1023 y (90% C.L.) m < 0.62 – 1.72 eV Nuclear Matrice Elements Ref: Simkovic (1999), Stoica (2001), Suhonen (1998,2003), Rodin (2005), Caurier (1996)

CONCLUSIONS ON NEMO3 NEMO-3 Detector running since 14 Feb. 2003 Expected performance of the detector has been reached ! 2b2n preliminary results for 100Mo, 82Se, 96Zr, 116Cd and 150Nd already more than 235 000 2b2n events collected 100Mo: in favour of Single State Dominance (SSD) 100Mo bb2n decay to excited state has been measured with ~ 4 s Preliminary T1/2(bb0n) limit (1.08 years of data): 100Mo (4.10 kg.y) T1/2(bb0n) > 4.6 1023 y  mn < 0.7 – 2.8 eV 82Se (0.55 kg.y) T1/2(bb0n) > 1023 y  mn < 1.8 – 4.9 eV Level of backgounds as excepted Free radon purification system in operation in August 2004 Reduction of the radon level by a factor ~10 Expected sensitivity in 5 years after radon purification 100Mo: T1/2(bb0n) > 2 .1024 y <mn> < 0.32 – 1.35 eV 82Se: T1/2(bb0n) > 8 1023 y <mn> < 0.62 – 1.72 eV Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

The SUPERNEMO project Idea : continue with a tracko-calo like detector with a mass of few 100 kg of 82Se (T 1/2 bb2n ~ 15 times greater than for 100Mo, Q bb around 3 MeV also) 3 years R&D program Laurent Simard for the NEMO-3 Collaboration WIN 05 Delphi 06-11 June 2005

Internal contaminations in the source foils in 208Tl and 214Bi From NEMO-3 to SuperNEMO NEMO-3 SuperNEMO 7 kg 100Mo T1/2(bb2n) = 7. 1018 y 100 kg 82Se T1/2(bb2n) = 1020 y Mass of isotope T1/2(bb0n) > 2. 1024 y <mn> < 0.3 – 1.3 eV T1/2(bb0n) > 2. 1026 y <mn> < 40 – 110 meV Sensitivity Energy resolution FWHM ~ 12% at 3 MeV (dominated by calorimeter ~ 8%) FWHM ~ 7% at 3 MeV (dominated by source foil) Efficiency e(bb0n) = 8 % poor energy resolution e- backscattering on scintillator e(bb0n) ~ 40 % Internal contaminations in the source foils in 208Tl and 214Bi 214Bi < 300 mBq/kg 208Tl < 20 mBq/kg 214Bi < 10 mBq/kg 208Tl < 2 mBq/kg Background bb2n ~ 2 cts / 7 kg / y (208Tl, 214Bi) ~ 0.5 cts/ 7 kg /y bb2n + (208Tl,214Bi) ≤ 1 cts/ 100 kg /y

SuperNEMO preliminary design Side view Plane and Modular Geometry (~5 kg of enriched isotope/module) 1 Module: Source (40 mg/cm2) 4 x 3 m2 Tracking volume: drift wire chamber in Geiger mode, ~ 3000 cells Calorimeter: scintillators + PMTs (~1000 PMTs) 20 modules: 100 kg of enriched isotope ~ 60 000 channels for drift chamber ~ 20 000 PMT if scint. block ~ 2 000 PMT if scint. bars 4 m 1 m 5 m Top view

Need of cavity of ~ 60m x 15m x15m Water shield 1,5m Need of cavity of ~ 60m x 15m x15m Possible in Gran Sasso or in Modane if a new cavity

sources R&D GOAL : A(214Bi) < ~ 10 mBq/kg A(208Tl) < ~2 mBq/kg not only enrich and purify sources, but also measure their radiopurity 2 mBq/kg of 1 kg of sources give 64 decays/year !!! sensitivity in 208Tl of High Purity-Germanium detectors used for the measurement of NEMO3 sources : 60 mBq/kg

calorimetry R&D Goal : reach FWHM less than 4% at 3 MeV (for NEMO-3 8%) 6% (source) (+) 4 % (calo) ~ 7 % (global) Idea : stay with plastic scintillators (to keep time of flight) but improve resolution collaboration CEN Bordeaux Gradignan-LAL-Kharkov-Dubna already promising results In addition : some english groups working on inorganic scintillators One option : reduce thickness of scintillator to collect more photons produced by scintillation and separate tagging of g from the energy measurement of the e- optimisation of the shape of the scintillator (small bloc, long bar read by several PMTs…) Need to improve also the performances of photomultiplier : scintillator adapted to PMTs, improve quantum efficiency collaboration CEN Bordeaux Gradignan-Photonis

Other projects CUORE bolometer 130Te 741 kg of natural Tellurium, 10 y b=10-2/(keV.kg.y) R = 10 keV T ½ (bb0n) > 2.1 1026 y mee < 0.02-0.1 eV b=10-3/(keV.kg.y) R = 5 keV T ½ (bb0n) > 9.2 1026 y mee < 0.01-0.05 eV GERDA Phase I : 15kg.y b=10-1/(keV.kg.y) T ½ (bb0n) > 3 1025 y mee < 0.23-0.75 eV HP-diode 76Ge Phase II : 100kg.y b=10-3/(keV.kg.y) T ½ (bb0n) > 2 1026 y mee < 0.09-0.29 eV

MOON : tracking with scintillating fibres with 100Mo Other projects EXO : TPC with liquid 136Xe, tagging of the decay product by bb0n (barium ion) with a laser 10 tons, they already have prototype of 200 kg of xenon (80% of 136Xe) b=0.015 c/(keV.kg.y) T ½ (bb0n) > 2 1026 y mee < 0.39-1.2 eV MAJORANA : segmented diodes of HP-Ge 500 kg of 86% 76Ge, 10 y T ½ (bb0n) > 4 1027 y mee < 0.038 0.007 eV MOON : tracking with scintillating fibres with 100Mo

SuperNEMO is a large scale bb0n detector Conclusions If any bb0n signal seen in any isotope, it will HAVE to be observed by a tracko-calo detector « a la NEMO » to tag the 2 e- emitted in bb0n decay NEMO-3 reached the expected performance and nominal background data taking will continue up to 2009 expected sensitivity: T1/2(bb0n) > 2. 1024 with 7 kg of 100Mo T1/2(bb0n) > 8. 1023 with 1 kg of 82Se NEMO technique can be extrapolated to 100 kg R&D program 2005-2007 in order to reach T1/2(bb0n) > 2. 1026 y  <mn> < 40 – 110 meV DE/E < 7% (FWHM) @ 3 MeV =  (DE/E sources)2 + (DE/E calorimeter)2 e(bb0n) ~ 40% 208Tl < 2 mBq/kg and 214Bi < 10 mBq/kg SuperNEMO is a large scale bb0n detector Need an international collaboration: France, Russia, UK, Tchec., Japan and USA !