Simona Gallerani Constraining cosmic reionization models with QSOs, GRBs and LAEs observational data In collaboration with: A. Ferrara, X. Fan, T. Choudhury,

Slides:



Advertisements
Similar presentations
Tom Theuns Institute for Computational Cosmology, Durham, UK Department of Physics, Antwerp, Belgium Munich 2005 Reionization And the thermal history of.
Advertisements

Metals at Highish Redshift And Large Scale Structures From DLAs to Underdense Regions Patrick Petitjean Institut d’Astrophysique de Paris B. Aracil R.
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.
21cm Lines and Dark Ages Naoshi Sugiyama Department of Physics and Astrophysics Nagoya University Furlanetto & Briggs astro-ph/ , Zaldarriaga et.
ESO Recent Results on Reionization Chris Carilli (NRAO) Dakota/Berkeley,August 2011 CO intensity mapping during reionization: signal in 3 easy steps Recent.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
Cosmological Reionization Nick Gnedin. Co-starring Gayler Harford Katharina Kohler Peter Shaver Mike Shull Massimo Ricotti.
Nick Gnedin. Epigraph Why is reionization interesting? I think the way to think about it is that it was the last time when most baryons got together and.
Blazar Gamma-ray absorption by cosmic radiation fields GRB Fermi z~60-6 CTA Susumu Inoue (Kyoto University) with (more than) a little help from my friends.
Collaborators: E. Egami, X. Fan, S. Cohen, R. Dave, K. Finlator, N. Kashikawa, M. Mechtley, K. Shimasaku, and R. Windhorst.
A hot topic: the 21cm line II Benedetta Ciardi MPA.
Deciphering the Ancient Universe with Gamma-Ray Bursts Nobuyuki Kawai (Tokyo Tech)
The Dark Age… before the stars, beyond the galaxies…
A New Constraint on the Intergalactic HeII Fraction at z~3 Matt McQuinn Einstein Fellows Symposium.
Galaxies at High Redshift and Reionization Bunker, A., Stanway, E., Ellis, R., Lacy, M., McMahon, R., Eyles, L., Stark D., Chiu, K. 2009, ASP Conference.
Large Scale Simulations of Reionization Garrelt Mellema Stockholm Observatory Collaborators: Ilian Iliev, Paul Shapiro, Marcelo Alvarez, Ue-Li Pen, Hugh.
Post GP-WMAP Reionization: the morning after We need quantitative measures of Epoch of reionization (Z reion ) Neutral fractions Volume fraction of ionized/neutral.
Dark Ages of Astronomy (Dark to Light) 2 Dark Ages z=1000 z=5.8 z=0.
The Host Galaxies of High-Redshift GRBs Edo Berger Harvard University.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
Simona Gallerani Constraining reionization through quasar and gamma ray burst absorption spectra In collaboration with: T. Roy Choudhury, P. Dayal, X.
The Reionization and Galaxy Evolution Probed by z=7 Lyα Emitters Ota, 2007, PhD Thesis, Univ. Tokyo Iye, Ota, Kashikawa et al. 2006, Nature, 443, 186 Ota.
Sources of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Beijing,
The First Constraint on the Reionization from GRBs: the Case of GRB Tomonori Totani (Kyoto) Nobuyuki Kawai, George Kosugi, Kentaro Aoki, Toru Yamada,
Nick Gnedin (Once More About Reionization)
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
Ranga-Ram Chary, Oct ’08 The First Billion Years of Galaxy Evolution Ranga-Ram Chary Spitzer Science Center/Planck Data Center California Institute of.
Len Cowie STScI March 2006 Metals & Star Formation at High Redshift.
Deep Survey of z=7 Lyα Emitters with the new red-sensitive CCDs on Subaru / Suprime-Cam Kazuaki Ota Cosmic Radiation Laboratory RIKEN M. Iye, N. Kashikawa.
History of Cosmological Reionization
1 Narrow-Band Imaging surveys at z=7.7 with WIRCam (CFHT) and HAWK-I (VLT) J.-G. Cuby (LAM) Collaborators : B. Clément (LAM), P. Hibon (KIAS) J.Willis.
Observational Constraints of of Reionization History in the JWST Era Observational Constraints of of Reionization History in the JWST Era Xiaohui Fan University.
Collaborators Blair Savage, Bart Wakker (UW-Madison) Blair Savage, Bart Wakker (UW-Madison) Ken Sembach (STScI) Ken Sembach (STScI) Todd Tripp (UMass)
The z > 5 Lyα forest at high resolution George Becker (Caltech) Wal Sargent (Caltech), Michael Rauch (OCIW), Rob Simcoe (MIT) IAU 199 March 18, 2005.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Accelerated Evolution of Lya LF at z>7 and the Physical Pictures Akira Konno (Univ. of Tokyo, ICRR) Co-Investigators: M. Ouchi, Y. Ono, K. Shimasaku, T.
Simulations of Lyα emission: fluorescence, cooling, galaxies Jordi Miralda Escudé ICREA University of Barcelona, Catalonia Berkeley, Collaborators:
GMT2010 Workshop 12 Years Ago, JWST (NGST) Deep Field Simulation (2’ x 2’) Im & Stockman (1998)
Lyman- Emission from The Intergalactic Medium
From Avi Loeb reionization. Quest to the Highest Redshift.
Probing the Reionization Epoch in the GMT Era Xiaohui Fan (University of Arizona) Seoul/GMT Meeting Oct 5, 2010.
Mark Dijkstra, PSU, June 2010 Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies ‘ Mark Dijkstra (ITC, Harvard) based.
High-Redshift Galaxies from HSC Deep Surveys Kazuhiro Shimasaku (University of Tokyo) 1. Galaxy Evolution 2. Dropout Galaxies and Lyman α Emitters 3. Observing.
Cosmic radiative feedback from reionization By Ruben Salvaterra (OA-Brera) C. Burigana (IASF-Bologna) R. Schneider (OA-Firenze) T. Choudhury (Cambridge)
The GRB Luminosity Function in the light of Swift 2-year data by Ruben Salvaterra Università di Milano-Bicocca.
The Twilight Zone of Reionization Steve Furlanetto Yale University March 13, 2006 Steve Furlanetto Yale University March 13, 2006 Collaborators: F. Briggs,
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Radiative Transfer Simulations The Proximity Effect of LBGs: Antonella Maselli, OAArcetri, Firenze, Italy Collaborators: A.Ferrara, M. Bruscoli, S. Marri.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Quasar Surveys -- From Sloan to SNAP
Constraint on Cosmic Reionization from High-z QSO Spectra Hiroi Kumiko Umemura Masayuki Nakamoto Taishi (University of Tsukuba) Mini Workshop.
The distant Universe and something about gravitational waves.
A Search for High Redshift Galaxies behind Gravitationally Lensing Clusters Kazuaki Ota (Kyoto U) Johan Richard (Obs.Lyon), Masanori Iye (NAOJ), Takatoshi.
First Stars and Reionization Andrea Ferrara SISSA/International School for Advanced Studies Trieste, Italy Five Answers for Five Questions.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
FUSE and HST Observations of Helium II Absorption in the IGM: Implications for Seeing HI Re-ionization Gerard Kriss STScI.
Epoch of Reionization  Cosmic Reionization: Neutral IGM ionized by the first luminous objects at 6 < z < 15 Evidence: CMB polarization (Komatsu+2009)
High Redshift QUASAR Spectra as Probe of Reionization of IGM.
ALMA studies of the first galaxies
X-Rays -> see you at COSPAR in July; also Kawai’s talk this conf.
Possibility of UV observation in Antarctica
Probing Reionization with Lyman Alpha Emitters Pratika Dayal
Lyman α – impact of the intergalactic medium
GRB : high-z GRBs as a new tool to study the reionization epoch
Probing Reionization & Galaxy Evolution by High-z Lyα Emitters
Constraint on Cosmic Reionization from High-z QSO Spectra
Presentation transcript:

Simona Gallerani Constraining cosmic reionization models with QSOs, GRBs and LAEs observational data In collaboration with: A. Ferrara, X. Fan, T. Choudhury, R. Salvaterra, P. Dayal Astronomical Observatory of Rome

Pre-overlap stage Overlap stage Post-overlap stage Reionization: a phase transition in the early Universe Dark ages What is the epoch of reionization (EOR)? ~500 kyr~100 Myr≤1 Gyr z~1000z~6z~20

Reionization process: observational constraints Quasars CMB Gamma Ray Bursts Ly  Emitters Page et al. (2007) Komatsu et al. (2009)

Becker et al. (2003) QSOs constraints on cosmic reionization SDSS ~20 5.7<z<6.4 Fan et al. (2005)

GRBs constraints on cosmic reionization  MODELLING DLA system Neutral IGM { Transmission feature around the Ly  line GRB z = 6.3 SUBARU TELESCOPE (Totani et al. 2005) (Tagliaferri et al. 2005)

(Kashikawa et al. 2006) SUBARU DEEP FIELD z=6.6 LAEs constraints on cosmic reionization z=5.7 VS No evolution LF UV for 5.7<z<6.6 No evolution LF Ly α for 3<z<6

Modeling reionization Choudhury & Ferrara (2005/2006); Choudhury, Ferrara & SG (2008) Free parameters: Log-Normal modelQSOs, PopII, PopIII

Reionization models Photo-Ionization Rate ERM LRM Data from McDonald & Miralda-Escude’(2001); Bolton et al. (2007); Fan et al.(2006) Early Reionization (ERM) Highly ionized IGM at z=6 Late Reionization (LRM) Two-phase IGM at z>6

Simulating the Ly  forest Coles & Jones (1991) Log-Normal model Reionization model Choudhury & Ferrara (2006) Optical depth Density field (ΛCDM) Neutral hydrogen (T IGM ; UVB) (Voigt profile) SG, Choudhury & Ferrara (2006)

Simulated spectra ERM LRM Optical depth evolution Fan et al. (2006) Songaila (2004) GAPS SG, Choudhury & Ferrara (2006)

Largest gap width distribution Observations vs Simulations x HI < z= 6.3 Low Redshift (z em <6)High Redshift (z em >6) SG, Ferrara, Fan, Choudhury (2007) ERM LRM ERM LRM

GRBs absorption spectra Kawai et al. (2006) 52 Å z=6.3 Tagliaferri et al. (2005)

142 Å GRBs absorption spectra Kawai et al. z=6.3 Tagliaferri et al. (2005)

190 Å GRBs absorption spectra Kawai et al. z=6.3 Tagliaferri et al. (2005)

Largest gap probability isocontours: GRBs SG, Salvaterra, Ferrara, Choudhury (2007) The ERM is twice more probable wrt the LRM The gap sizes are consistent with x HI =6.4  % 10% 40%

0 L α [10 42 erg/sec] obs x HI =1e-3 x HI =0.05 x HI =0.1 f esc =0.1; SFR=113 M sun /yr; t * =1.e8 yr Dayal, Ferrara, SG (2008) zf * /ε DC f esc,α zM h (M sun )SFR(M sun/yr ) Log L α [erg/sec] Log N (>L α ) [Mpc -3 ] LAEs constraints on cosmic reionization Kashikawa et al 06 Shimazaku et al 06 Dawson et al 07

An Early Reionization Model (ERM) The analysis of dark regions (gaps) in QSO absorption spectra favors a highly ionized z~6. The gap size along the LOS towards the z=6.3 is consistent with x HI ~ The evolution of the Ly α luminosity 5.7<z<6.6 is well fitted by a reionization model with z rei ≥ 7. The overall result points towards an extended reionization process which starts at z>=11 and completes at z>=7, in agreement with WMAP5 data.

Largest gap width distribution Observations vs Simulations Low Redshift (z em <6) ERM LRM SG, Ferrara, Fan, Choudhury (2007) High Redshift (z em >6) LRM ERM HR Fan et al. (2006 This work

0 L α [10 42 erg/sec] Lyα emitting galaxies obs f esc fraction of ionizing photons that escape the galaxy f α fraction of Ly α photons that escape the galaxy Q ionizing photons rate f * fraction of baryonic matter which forms stars over a timescale t * =ε DC t H x HI =1e-3 x HI =0.05 x HI =0.1 f esc =0.1; SFR=113 M sun /yr; t * =1.e8 yr