Digilab 7-Segment Displays Lab 4. selyInstruction name “000”true if b = a false otherwise = “001”true if b /= a false otherwise <> “010”true if b < a.

Slides:



Advertisements
Similar presentations
Quad 2-to-1 and Quad 4-to-1 Multiplexers Discussion D2.4 Example 7.
Advertisements

Arbitrary Waveform Discussion 5.5 Example 34.
Multiplexer as a Universal Element Discussion D2.6 Example 9.
7-Segment Display: Spartan-3 board
1 VLSI DESIGN USING VHDL Part II A workshop by Dr. Junaid Ahmed Zubairi.
Ring Counter Discussion D5.3 Example 32. Ring Counter if rising_edge(CLK) then for i in 0 to 2 loop s(i)
Adder Discussion D6.2 Example 17. s i = c i ^ (a i ^ b i ) c i+1 = a i * b i + c i * (a i ^ b i ) Full Adder (Appendix I)
Top-level VHDL Designs
Generic Multiplexers: Parameters Discussion D2.5 Example 8.
Multiplication Discussion Multiplier Binary Multiplication 4 x 4 Multiplier.
Decoders and Encoders Lecture L4.2. Decoders and Encoders Binary Decoders Binary Encoders Priority Encoders.
Logic Design Fundamentals - 3 Discussion D3.2. Logic Design Fundamentals - 3 Basic Gates Basic Combinational Circuits Basic Sequential Circuits.
RS-232 Port Discussion D7.1. Loop feedback RS-232 voltage levels: +5.5 V (logic 0) -5.5 V (logic 1)
Integer Square Root.
Single-Cycle Instructions VHDL Tutorial R. E. Haskell and D. M. Hanna T5: VHDL ROM.
Digilent Spartan 3 Board Lecture L2.2
1 Comparators Discussion D A 1-Bit Comparator The variable Gout is 1 if x > y or if x = y and Gin = 1. The variable Eout is 1 if x = y and Gin =
Structural VHDL VHDL Tutorial R. E. Haskell and D. M. Hanna T3: ALU Design.
Counters Discussion D5.3 Example 33. Counters 3-Bit, Divide-by-8 Counter 3-Bit Behavioral Counter in Verilog Modulo-5 Counter An N-Bit Counter.
Finite State Machines Discussion D7.1 Mealy and Moore Machines.
Multiplication Discussion Multiplier Binary Multiplication 4 x 4 Multiplier.
7-Segment Display DIO1 Board. Digilab2 – DIO1 Boards Four 7-segment displays A0A1A2A3.
Introduction to VHDL Multiplexers. Introduction to VHDL VHDL is an acronym for VHSIC (Very High Speed Integrated Circuit) Hardware Description Language.
Lecture L6.2 VHDL Multiply Operator (*)
Lab 2 4-Bit Adder Digilent Spartan 3 Board Lecture L2.3.
Division Lecture L6.3. Division
4-to-1 Multiplexer: case Statement Discussion D2.3 Example 6.
Finite State Machines Mano and Kime Sections 4-4, 4-5, 4-8.
Finite State Machines Discussion D8.1 Example 36.
Digilent Spartan 3 Board Discussion D3.3
7-Segment Displays Digilent Spartan 3 Board Discussion DS-4.2.
Lab 3 & 4 Discussion EE414/514 VHDL Design September 25.
Division Discussion D11.3. Division
7-Segment Displays VHDL Tutorial R. E. Haskell and D. M. Hanna T4: Xilinx LogiBLOX.
Registers Lab 5 Mano and Kime Sections 5-2, 5-3, 5-7.
Sequential Multiplication Lecture L6.4. Multiplication 13 x = 8Fh 1101 x
Shift Registers Discussion D5.2 Example Bit Shift Register qs(3) qs(2) qs(1) qs(0) if rising_edge(CLK) then for i in 0 to 2 loop s(i) := s(i+1);
7-Segment Display DIO1 Board Verilog.
Code Converters Section 3-4 Mano & Kime.
ECE 448: Spring 12 Lab 4 – Part 2 Finite State Machines Basys2 FPGA Board.
PS/2 Mouse/Keyboard Port Discussion D7.2. PS/2 Port.
4-bit Shift Register. 2-bit Register Serial-in-serial-out Shift Register.
LAB 9 Finite State Machine (FSM) Ui Luu Glendale Community College Bassam Matar Chandler-Gilbert Community College.
1 Part V: VHDL CODING. 2 Design StructureData TypesOperators and AttributesConcurrent DesignSequential DesignSignals and VariablesState Machines A VHDL.
Digilab2 DIO1 Board. Digilab2 – DIO1 Boards 50 MHz clock mclk Prom socket Spartan IIE.
A.7 Concurrent Assignment Statements Used to assign a value to a signal in an architecture body. Four types of concurrent assignment statements –Simple.
VHDL for Combinational Circuits. VHDL We Know Simple assignment statements –f
ENG2410 Digital Design LAB #5 Modular Design and Hierarchy using VHDL.
Reaction Timer Project
ECE 331 – Digital System Design Multiplexers and Demultiplexers (Lecture #13)
2’s Complement 4-Bit Saturator Discussion D2.8 Lab 2.
4-to-1 Multiplexer: Module Instantiation Discussion D2.2 Example 5.
Copyright (c) 2003 by Valery Sklyarov and Iouliia Skliarova: DETUA, IEETA, Aveiro University, Portugal.
 Seattle Pacific University EE Logic System DesignCounters-1 Shift Registers DQ clk DQ DQ ShiftIn Q3Q3 Q2Q2 DQ Q1Q1 Q0Q0 A shift register shifts.
INF H131 Clock and Reset Unit (CRU) module library ieee; use ieee.std_logic_1164.all; entity cru is port ( arst : in std_logic; -- Asynch. reset.
Prime Numbers Lecture L6.1 Sieve of Eratosthenes.
Registers and Counters Discussion D8.1. Logic Design Fundamentals - 3 Registers Counters Shift Registers.
LAB #5 Modular Design and Hierarchy using VHDL
Combinational logic circuit
Lecture L5.1 Mealy and Moore Machines
ENG6530 Reconfigurable Computing Systems
Combinational Circuits Using VHDL
A Data Stack CoreGen Discussion 12.1.
A Greatest Common Divisor (GCD) Processor
Fibonacci Sequence Lecture L4.1 Lab 3.
Multiplication Discussion 11.1.
Fast, Asynchronous SRAM
RS-232 Port Discussion D12.1.
High-Low Guessing Game
디 지 털 시 스 템 설 계 UP2 Kit를 이용한 카운터 설계
Presentation transcript:

Digilab 7-Segment Displays Lab 4

selyInstruction name “000”true if b = a false otherwise = “001”true if b /= a false otherwise <> “010”true if b < a (unsigned) false otherwise U< “011”true if b > a (unsigned) false otherwise U> “100”true if b <= a (unsigned) false otherwise U<= “101”true if b < a (signed) false otherwise < “110”true if b > a (signed) false otherwise > “111”true if b <= a (signed) false otherwise <=

Digilab2 – DIO1 Boards Four 7-segment displays dig1dig2dig3dig4

Digilab2 Board – Common Anodes A1 A2 A3 A4 AtoG(6 downto 0) Pins

switches 7-segment displays LEDs pushbuttons Digilab XLA

Digilab Board dig3dig2dig1dig4

Digilab XLA Board – Common Anodes A4 A3 A2 A1 CA CB CC CD CE CF CG Pins

7-Segment Decoder a-g LOW to turn on segment

library IEEE; use IEEE.std_logic_1164.all; entity seg7dec is port (q: in STD_LOGIC_VECTOR(3 downto 0); AtoG: out STD_LOGIC_VECTOR(6 downto 0)); end seg7dec; 7-Segment Decoder

architecture seg7dec_arch of seg7dec is begin process(q) begin case q is when "0000" => AtoG <= " "; when "0001" => AtoG <= " "; when "0010" => AtoG <= " "; when "0011" => AtoG <= " "; when "0100" => AtoG <= " "; when "0101" => AtoG <= " "; when "0110" => AtoG <= " "; when "0111" => AtoG <= " "; when "1000" => AtoG <= " "; when "1001" => AtoG <= " "; when "1010" => AtoG <= " "; when "1011" => AtoG <= " "; when "1100" => AtoG <= " "; when "1101" => AtoG <= " "; when "1110" => AtoG <= " "; when others => AtoG <= " "; end case; end process; end seg7dec_arch;

Digilab2 Board – Common Anodes A1 A2 A3 A4 AtoG(6 downto 0) Pins

Multiplex displays

Multiplex displays

Multiplex displays

Multiplex displays

Lab 4

signal clkdiv: std_logic_vector(23 downto 0); begin -- Divide the master clock (50MHz) down -- to a lower frequency. process (mclk) begin if mclk = '1' and mclk'Event then clkdiv <= clkdiv + 1; end if; end process; cclk <= clkdiv(17); Hz = 50MHz/2^18

-- A 2-bit up-counter library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity ctr2bit is port ( clr: in STD_LOGIC; clk: in STD_LOGIC; q: out STD_LOGIC_VECTOR (1 downto 0) ); end ctr2bit; ctr2bit.vhd

architecture ctr2bit_arch of ctr2bit is begin process (clk, clr) variable COUNT: STD_LOGIC_VECTOR (1 downto 0); begin if clr = '1' then q <= "00"; elsif clk'event and clk='1' then COUNT := COUNT + 1; q <= COUNT; end if; end process; end ctr2bit_arch; ctr2bit.vhd

Lab 4

library IEEE; use IEEE.std_logic_1164.all; entity Acode is port ( Aen: in STD_LOGIC_VECTOR (3 downto 0); Asel: in STD_LOGIC_VECTOR (1 downto 0); A: out STD_LOGIC_VECTOR (3 downto 0) ); end Acode; Acode.vhd

architecture Acode_arch of Acode is begin process(Aen, Asel) begin A <= "0000"; case Asel is when "00" => if Aen(1) = '1' then A <= "1000"; end if; when "01" => if Aen(2) = '1' then A <= "0100"; end if; when "10" => if Aen(3) = '1' then A <= "0010"; end if; when others => if Aen(4) = '1' then A <= "0001"; end if; end case; end process; end Acode_arch; Acode.vhd

Lab 4

-- System Library Components component IBUFG port ( I : in STD_LOGIC; O : out std_logic ); end component; U00:IBUFG port map (I => bn, O => bnbuf);