CSci 6971: Image Registration Lecture 9: Registration Components February 10, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart,

Slides:



Advertisements
Similar presentations
ITK Registration Methods
Advertisements

ITK Deformable Registration
ITK Deformable Registration
Image Registration  Mapping of Evolution. Registration Goals Assume the correspondences are known Find such f() and g() such that the images are best.
Mutual Information Based Registration of Medical Images
CSE473/573 – Stereo and Multiple View Geometry
Medical Image Registration Kumar Rajamani. Registration Spatial transform that maps points from one image to corresponding points in another image.
Vision REU Week 3. Image registration  Used mutual information-based registration from ITK Ben SchoepkeREU Week 36/8/07 Fixed imageMoving image Pre-registrationPost-registration.
The content of these slides by John Galeotti, © Carnegie Mellon University (CMU), was made possible in part by NIH NLM contract# HHSN P,
CSci 6971: Image Registration Lecture 14 Distances and Least Squares March 2, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart,
OverviewOverview Motion correction Smoothing kernel Spatial normalisation Standard template fMRI time-series Statistical Parametric Map General Linear.
Coregistration and Normalisation By Lieke de Boer & Julie Guerin.
NAMIC AHM, Jan 2008 Registration Helper Classes Stephen Aylward Matt Turek Luis Ibanez.
National Alliance for Medical Image Computing ITK The Image Segmentation and Registration Toolkit Julien Jomier Kitware Inc.
Medical Imaging Mohammad Dawood Department of Computer Science University of Münster Germany.
CSci 6971: Image Registration Lecture 3: Images and Transformations January 20, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart,
1 Improving Entropy Registration Theodor D. Richardson.
CSci 6971: Image Registration Lecture 26: BSpline Transforms April 20, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart, RPI.
Motion Analysis (contd.) Slides are from RPI Registration Class.
CSci 6971: Image Registration Lecture 4: First Examples January 23, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart, RPI Dr.
CSci 6971: Image Registration Lecture 8: Registration Components February 6, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart,
CSci 6971: Image Registration Lecture 27: FEM-Based Methods April 23, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart, RPI Dr.
CS CS 175 – Week 2 Processing Point Clouds Registration.
CSci 6971: Image Registration Lecture 2: Vectors and Matrices January 16, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart, RPI.
CSci 6971: Image Registration Lecture 8: Image Resampling February 3, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart, RPI Dr.
CSci 6971: Image Registration Lecture 20: Demons Registration April 16, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart, RPI.
CSci 6971: Image Registration Lecture 10: Registration Components February 13, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart,
CSci 6971: Image Registration Lecture 5: Feature-Base Regisration January 27, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart,
CSci 6971: Image Registration Lecture 16: View-Based Registration March 16, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart,
A Big Thanks Prof. Jason Bohland Quantitative Neuroscience Laboratory Boston University Dr. Luis Ibanez Open Source Proponent,
Yuping Lin and Gérard Medioni.  Introduction  Method  Register UAV streams to a global reference image ▪ Consecutive UAV image registration ▪ UAV to.
National Alliance for Medical Image Computing Registration in Slicer3 Julien Jomier Kitware Inc.
Computer Vision - Fitting and Alignment
ITK The Insight Segmentation & Registration Toolkit Martin Urschler Institute for Computer Graphics and Vision Graz University of Technology.
Adaptive Registration of Very Large Images Brian Jackson & Ardy Goshtasby Wright State University.
ITK Lecture 13: Registration
Digital Image Processing Lecture 7: Geometric Transformation March 16, 2005 Prof. Charlene Tsai.
CSci 6971: Image Registration Lecture 3: Images and Transformations March 1, 2005 Prof. Charlene Tsai.
CS654: Digital Image Analysis Lecture 8: Stereo Imaging.
Jan Kamenický Mariánská  We deal with medical images ◦ Different viewpoints - multiview ◦ Different times - multitemporal ◦ Different sensors.
Image Registration as an Optimization Problem. Overlaying two or more images of the same scene Image Registration.
A New Method of Probability Density Estimation for Mutual Information Based Image Registration Ajit Rajwade, Arunava Banerjee, Anand Rangarajan. Dept.
Medical Image Analysis Dr. Mohammad Dawood Department of Computer Science University of Münster Germany.
Statistical Parametric Mapping Lecture 11 - Chapter 13 Head motion and correction Textbook: Functional MRI an introduction to methods, Peter Jezzard, Paul.
ELE 488 Fall 2006 Image Processing and Transmission ( )
Group-wise Registration in NAMIC-kit Serdar K Balci (MIT) Lilla Zöllei (MGH) Kinh Tieu (BWH) Mert R Sabuncu (MIT) Polina Golland (MIT)
CSci 6971: Image Registration Lecture 15: Data Structures & Other RGRL Features March 5, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck.
ITK Basic Filters Kitware Inc.. ITK Basic Filters Pixel-wise Arithmetic, Casting, Thresholding Mathematical morphology Noise reduction Gaussian, Anisotropic.
Comparison of Image Registration Methods David Grimm Joseph Handfield Mahnaz Mohammadi Yushan Zhu March 18, 2004.
Image registration aligns the common features of two images. The open-source Insight Toolkit (ITK, funded by the National Library of Medicine) provides.
Image Registration Lecture 9: Registration Components March 22, 2005 Prof. Charlene Tsai.
ITK Statistical Classification Kitware Inc.. Statistical Classification Multiple Components Images K-Means Markov Random Fields.
Lecture 16: Image alignment
Presented by David Lee 3/20/2006
University of Ioannina
Imaging and Depth Estimation in an Optimization Framework
Fereshteh S. Bashiri Advisors: Zeyun Yu, Roshan M. D’souza
The Chinese University of Hong Kong
Mutual Information Based Registration of Medical Images
Lecture 12 Theory of Registration ch
Multi-modality image registration using mutual information based on gradient vector flow Yujun Guo May 1,2006.
CV: Matching in 2D Matching 2D images to 2D images; Matching 2D images to 2D maps or 2D models; Matching 2D maps to 2D maps MSU CSE 803 Stockman.
MPHY8149: Image Registration
SimpleITK Fundamental Concepts
SimpleITK Fundamental Concepts
Image Registration 박성진.
Draw the new square in the space to the right.
SimpleITK Fundamental Concepts
Lecture 7 Spatial filtering.
Image Registration  Mapping of Evolution
Presentation transcript:

CSci 6971: Image Registration Lecture 9: Registration Components February 10, 2004 Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware Prof. Chuck Stewart, RPI Dr. Luis Ibanez, Kitware

Image RegistrationLecture 9 2 Registration Components Basic Registration Framework

Image RegistrationLecture 9 3 Image Registration Framework Fixed Image Moving Image Metric Transform Interpolator Optimizer Parameters

Image RegistrationLecture 9 4 Other Image Metrics Mean Reciprocal Square Differences

Image RegistrationLecture 9 5 Mean Reciprocal Squared Differences Image A Image B For each pixel in A Difference( index ) = A( index ) – B( index ) 1 Match( A, B ) += ( 1 + λ ∙ Difference( index ) 2 )

Image RegistrationLecture 9 6 For each pixel in the Fixed Image Fixed Image Grid j i y x Fixed Image Physical Coordinates y’ x’ Moving Image Physical Coordinates Moving Image Grid j i Space Transform

Image RegistrationLecture 9 7 Mean Reciprocal Squared Differences #include "itkImage.h" #include "itkMeanReciprocalSquareDifferenceImageToImageMetric.h" #include "itkLinearInterpolateImageFunction.h" #include "itkTranslationTransform.h" typedef itk::Image ImageType; ImageType::ConstPointer fixedImage = GetFixedImage(); ImageType::ConstPointer movingImage = GetMovingImage(); typedef itk::LinearInterpolateImageFunction InterpolatorType; InterpolatorType::Pointer interpolator = InterpolatorType::New(); typedef itk::TranslationTransform TransformType; TransformType::Pointer transform = TransformType::New();

Image RegistrationLecture 9 8 typedef itk::MeanReciprocalSquareDifferenceImageToImageMetric MetricType; MetricType::Pointer metric = MetricType::New(); metric->SetInterpolator( interpolator ); metric->SetTransform( transform ); metric->SetFixedImage( fixedImage ); metric->SetMovingImage( movingImage ); MetricType::TransformParametersType translation( Dimension ); translation[0] = 12; translation[1] = 27; double value = metric->GetValue( translation ); Mean Reciprocal Squared Differences

Image RegistrationLecture 9 9 Evaluating many matches y Fixed Image Transform x y Moving Image x

Image RegistrationLecture 9 10 Plotting the Metric Mean Reciprocal Squared Differences Transform Parametric Space

Image RegistrationLecture 9 11 Plotting the Metric Mean Reciprocal Squared Differences Transform Parametric Space

Image RegistrationLecture 9 12 Evaluating many matches y Fixed Image Transform x y Moving Image x (-15,-25) mm

Image RegistrationLecture 9 13 Plotting the Metric Mean Reciprocal Squared Differences Transform Parametric Space

Image RegistrationLecture 9 14 Plotting the Metric Mean Reciprocal Squared Differences Transform Parametric Space

Image RegistrationLecture 9 15 Watch over your optimizer Example: Optimizer registering an image with itself starting at (-15mm, -25mm)

Image RegistrationLecture 9 16 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 1.0 mm

Image RegistrationLecture 9 17 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 2.0 mm

Image RegistrationLecture 9 18 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 5.0 mm

Image RegistrationLecture 9 19 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 10.0 mm

Image RegistrationLecture 9 20 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 20.0 mm

Image RegistrationLecture 9 21 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 40.0 mm

Image RegistrationLecture 9 22 Quiz #1 If the Metric is Noisy Where is the noise coming from ?

Image RegistrationLecture 9 23 Smoothing the Image

Image RegistrationLecture 9 24 Evaluating many matches y Fixed Image Transform x y Moving Image x

Image RegistrationLecture 9 25 Plotting the Smoothed Metric Mean Reciprocal Squared Differences Transform Parametric Space

Image RegistrationLecture 9 26 Plotting the Smoothed Metric Mean Reciprocal Squared Differences Transform Parametric Space

Image RegistrationLecture 9 27 Watch over your optimizer Example: Optimizer registering an image with itself starting at (-15mm, -25mm)

Image RegistrationLecture 9 28 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 1.0 mm

Image RegistrationLecture 9 29 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 2.0 mm

Image RegistrationLecture 9 30 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 5.0 mm

Image RegistrationLecture 9 31 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 10.0 mm

Image RegistrationLecture 9 32 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 20.0 mm

Image RegistrationLecture 9 33 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 40.0 mm

Image RegistrationLecture 9 34 Evaluating many matches y Fixed Image Transform x y Moving Image x (-15,-25) mm

Image RegistrationLecture 9 35 Plotting the Smoothed Metric Mean Reciprocal Squared Differences Transform Parametric Space

Image RegistrationLecture 9 36 Plotting the Smoothed Metric Mean Reciprocal Squared Differences Transform Parametric Space

Image RegistrationLecture 9 37 Watch over your optimizer Example: Optimizer registering an image shifted by (-15mm, -25mm) The optimizer starts at (0mm,0mm)

Image RegistrationLecture 9 38 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 1.0 mm

Image RegistrationLecture 9 39 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 2.0 mm

Image RegistrationLecture 9 40 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 5.0 mm

Image RegistrationLecture 9 41 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 10.0 mm

Image RegistrationLecture 9 42 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 20.0 mm

Image RegistrationLecture 9 43 Plotting the Optimizer’s Path Mean Reciprocal Squared Differences Step Length = 40.0 mm

Image RegistrationLecture 9 44 Other Image Metrics Multi – Modality Registration

Image RegistrationLecture 9 45 Multiple Image Modalities Number of pairs

Image RegistrationLecture 9 46 Multiple Image Modalities More possible pairs

Image RegistrationLecture 9 47 Intuitive Notion of Joint Entropy The More Pairs Exist The Larger the Joint Entropy

Image RegistrationLecture 9 48 Mutual Information Reduction of Number of Pairs Reduction of Joint Entropy

Image RegistrationLecture 9 49 Mutual Information Mutual Information = Joint Entropy ( Image A, Image B ) - Entropy Image A - Entropy Image B

Image RegistrationLecture 9 50 Mattes Mutual Information #include "itkImage.h" #include "itkMattesMutualInformationImageToImageMetric.h" #include "itkLinearInterpolateImageFunction.h" #include "itkTranslationTransform.h" typedef itk::Image ImageType; ImageType::ConstPointer fixedImage = GetFixedImage(); ImageType::ConstPointer movingImage = GetMovingImage(); typedef itk::LinearInterpolateImageFunction InterpolatorType; InterpolatorType::Pointer interpolator = InterpolatorType::New(); typedef itk::TranslationTransform TransformType; TransformType::Pointer transform = TransformType::New();

Image RegistrationLecture 9 51 typedef itk::MattesMutualInformationImageToImageMetric MetricType; MetricType::Pointer metric = MetricType::New(); metric->SetNumberOfHistogramBins( 20 ); metric->SetNumberOfSpatialSamples( ); metric->SetInterpolator( interpolator ); metric->SetTransform( transform ); metric->SetFixedImage( fixedImage ); metric->SetMovingImage( movingImage ); MetricType::TransformParametersType translation( Dimension ); translation[0] = 12; translation[1] = 27; double value = metric->GetValue( translation ); Mattes Mutual Information

Image RegistrationLecture 9 52 Evaluating many matches y Fixed Image Transform x y Moving Image x

Image RegistrationLecture 9 53 Plotting the Same Modality Metric Mattes Mutual Information Transform Parametric Space

Image RegistrationLecture 9 54 Plotting the Same Modality Metric Mattes Mutual Information Transform Parametric Space

Image RegistrationLecture 9 55 Evaluating many matches y Fixed Image Transform x y Moving Image x (-15,-25) mm

Image RegistrationLecture 9 56 Plotting the Same Modality Metric Mattes Mutual Information Transform Parametric Space

Image RegistrationLecture 9 57 Plotting the Same Modality Metric Mattes Mutual Information Transform Parametric Space

Image RegistrationLecture 9 58 Evaluating many matches y Fixed Image Transform x y Moving Image x

Image RegistrationLecture 9 59 Plotting the Multi-Modality Metric Mattes Mutual Information Transform Parametric Space

Image RegistrationLecture 9 60 Plotting the Multi-Modality Metric Mattes Mutual Information Transform Parametric Space

Image RegistrationLecture 9 61 Evaluating many matches y Fixed Image Transform x y Moving Image x

Image RegistrationLecture 9 62 Plotting the Multi-Modality Metric Mattes Mutual Information Transform Parametric Space

Image RegistrationLecture 9 63 Plotting the Multi-Modality Metric Mattes Mutual Information Transform Parametric Space

Image RegistrationLecture 9 64 Watch over your optimizer Example: Optimizer registering two aligned multi-modality images starting at (-15mm, -25mm)

Image RegistrationLecture 9 65 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 1.0 mm

Image RegistrationLecture 9 66 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 2.0 mm

Image RegistrationLecture 9 67 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 5.0 mm

Image RegistrationLecture 9 68 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 10.0 mm

Image RegistrationLecture 9 69 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 20.0 mm

Image RegistrationLecture 9 70 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 40.0 mm

Image RegistrationLecture 9 71 Watch over your optimizer Example: Optimizer registering two multi-modality images shifted by (-15mm, -25mm) The optimizer starts at (0mm,0mm)

Image RegistrationLecture 9 72 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 1.0 mm

Image RegistrationLecture 9 73 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 2.0 mm

Image RegistrationLecture 9 74 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 5.0 mm

Image RegistrationLecture 9 75 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 10.0 mm

Image RegistrationLecture 9 76 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 20.0 mm

Image RegistrationLecture 9 77 Plotting the Optimizer’s Path Mattes Mutual Information Step Length = 40.0 mm

Image RegistrationLecture 9 78 Mutual Information Variants in ITK Viola – Wells Mattes Mutual Information Histogram

Image RegistrationLecture 9 79 End Enjoy ITK !