2003/02/25 Chapter 3 1頁1頁 Chapter 3 : Basic Transcendental Functions 3.1 The Exponential Function.

Slides:



Advertisements
Similar presentations
Integration by Tables Lesson 8.6. Tables of Integrals Text has covered only limited variety of integrals Applications in real life encounter many other.
Advertisements

Contents 17.1 Complex Numbers 17.2 Powers and Roots
DIFFERENTIATION & INTEGRATION CHAPTER 4.  Differentiation is the process of finding the derivative of a function.  Derivative of INTRODUCTION TO DIFFERENTIATION.
Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
© 2010 Pearson Education, Inc. All rights reserved.
2003/03/26 Chapter 6 1頁1頁 Chapter 6 : Residues & Their Use in Integration 6.1 Definition of the Residues.
Logarithmic Equations Unknown Exponents Unknown Number Solving Logarithmic Equations Natural Logarithms.
2003/02/14Chapter 2 1頁1頁 Chapter 2 : The Complex Function & Its Derivative 2.1 Introduction.
© 2010 Pearson Education, Inc. All rights reserved.
© 2010 Pearson Education, Inc. All rights reserved.
Lesson 8-1 Algebra Check Skills You’ll Need
Calculus Chapter 5 Day 1 1. The Natural Logarithmic Function and Differentiation The Natural Logarithmic Function- The number e- The Derivative of the.
Chapter 3. Elementary Functions Weiqi Luo ( 骆伟祺 ) School of Software Sun Yat-Sen University : Office : # A313
Calculus and Analytic Geometry II
Transcendental Functions Chapter 6. For x  0 and 0  a  1, y = log a x if and only if x = a y. The function given by f (x) = log a x is called the logarithmic.
SECTION 2.2 Finding Limits Graphically & Numerically.
Finite Mathematics Dr. Saeid Moloudzadeh Exponential Functions and Models 1 Contents Algebra Review Functions and Linear Models Systems.
1.2 - Mathematical Models: A Catalog of Essential Functions.
1 Chapter 3. Elementary Functions Consider elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific,
Chapter 2. Analysis Functions §2.2 Necessary and sufficient conditions of analytic functions. §2.1 The concept of analytic function §2.3 Elementary functions.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 3 Integration.
Chapter (3) Transcendental Functions 1- Trigonometric Functions 2- Exponential Functions 3- Hyperbolic Functions.
Chapter 3 Exponential and Logarithmic Functions. Chapter 3.1 Exponential Functions.
MTH 125 Calculus I. SECTION 1.5 Inverse Functions.
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec
10.1/10.2 Logarithms and Functions
Solving Logarithmic Equations
Calculus and Analytical Geometry
12.8 Exponential and Logarithmic Equations and Problem Solving Math, Statistics & Physics 1.
Inverse of Transcendental Functions 1- Inverse of Trigonometric Functions 2- Inverse of Exponential Functions 3- Inverse of Hyperbolic Functions.
STROUD Worked examples and exercises are in the text Programme 3: Hyperbolic functions HYPERBOLIC FUNCTIONS PROGRAMME 3.
Logarithmic, Exponential, and Other Transcendental Functions
Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions.
Chapter 1 Functions and Models Calculus 5e Early Transcendentals Single Variable James Stewart.
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec
Goals:  Understand logarithms as the inverse of exponents  Convert between exponential and logarithmic forms  Evaluate logarithmic functions.
The Cauchy–Riemann (CR) Equations. Introduction The Cauchy–Riemann (CR) equations is one of the most fundamental in complex function analysis. This provides.
Transcendental Functions
Chapter 3 Derivatives.
Advance Calculus Diyako Ghaderyan Contents:
Chapter 1 Functions Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Logarithmic Functions and Their Graphs
35. Section 5.7 Further Transcendental Functions
Packet #10 Proving Derivatives
Chapter 1 Functions.
Chapter 1 Functions.
Warm Up Six Chapter 5.5 Derivatives of base not e 11/20/2018
? Hyperbolic Functions Idea
Inverse, Exponential and Logarithmic Functions
Wednesday, January 13 Essential Questions
Chapter 3 Integration Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Section 3.2 The Exponential, Trigonometric, and Hyperbolic Functions
Using Integration Tables
Warm Up Chapter 5.4 e derivatives Saturday, December 08, 2018
Warm Up Chapter 5.1 ln derivative Sunday, January 13, 2019
Warm Up Chapter 5.4 e derivatives Monday, January 14, 2019
Logarithmic and Exponential Functions
Copyright © 2006 Pearson Education, Inc
Evaluating Logarithms
Chapter 1 Functions Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Inverse, Exponential and Logarithmic Functions
Exponential and Logarithmic Forms
Exponential and Logarithmic Functions
Warm Up Chapter 5.4 e derivatives Friday, May 10, 2019
Chapter 3 Derivatives.
Lial/Hungerford/Holcomb: Mathematics with Applications 10e
Applications of Integration
Chapter 1 Functions.
Presentation transcript:

2003/02/25 Chapter 3 1頁1頁 Chapter 3 : Basic Transcendental Functions 3.1 The Exponential Function

2003/02/25 Chapter 3 2頁2頁

2003/02/25 Chapter 3 3頁3頁

2003/02/25 Chapter 3 4頁4頁

2003/02/25 Chapter 3 5頁5頁

2003/02/25 Chapter 3 6頁6頁

2003/02/25 Chapter 3 7頁7頁

2003/02/25 Chapter 3 8頁8頁

2003/02/25 Chapter 3 9頁9頁

2003/02/25 Chapter 3 10 頁

2003/02/25 Chapter 3 11 頁

2003/02/25 Chapter 3 12 頁 3.2 Trigonometric Functions

2003/02/25 Chapter 3 13 頁

2003/02/25 Chapter 3 14 頁

2003/02/25 Chapter 3 15 頁

2003/02/25 Chapter 3 16 頁

2003/02/25 Chapter 3 17 頁

2003/02/25 Chapter 3 18 頁

2003/02/25 Chapter 3 19 頁 3.3 Hyperbolic Functions

2003/02/25 Chapter 3 20 頁

2003/02/25 Chapter 3 21 頁

2003/02/25 Chapter 3 22 頁 3.4 Logarithmic Functions

2003/02/25 Chapter 3 23 頁

2003/02/25 Chapter 3 24 頁

2003/02/25 Chapter 3 25 頁

2003/02/25 Chapter 3 26 頁

2003/02/25 Chapter 3 27 頁

2003/02/25 Chapter 3 28 頁

2003/02/25 Chapter 3 29 頁

2003/02/25 Chapter 3 30 頁

2003/02/25 Chapter 3 31 頁

2003/02/25 Chapter 3 32 頁 3.5 Analyticity of the Logarithmic Function

2003/02/25 Chapter 3 33 頁

2003/02/25 Chapter 3 34 頁

2003/02/25 Chapter 3 35 頁

2003/02/25 Chapter 3 36 頁

2003/02/25 Chapter 3 37 頁

2003/02/25 Chapter 3 38 頁

2003/02/25 Chapter 3 39 頁

2003/02/25 Chapter 3 40 頁

2003/02/25 Chapter 3 41 頁

2003/02/25 Chapter 3 42 頁

2003/02/25 Chapter 3 43 頁

2003/02/25 Chapter 3 44 頁

2003/02/25 Chapter 3 45 頁

2003/02/25 Chapter 3 46 頁 3.6 Complex Exponential

2003/02/25 Chapter 3 47 頁

2003/02/25 Chapter 3 48 頁

2003/02/25 Chapter 3 49 頁

2003/02/25 Chapter 3 50 頁

2003/02/25 Chapter 3 51 頁

2003/02/25 Chapter 3 52 頁

2003/02/25 Chapter 3 53 頁

2003/02/25 Chapter 3 54 頁

2003/02/25 Chapter 3 55 頁

2003/02/25 Chapter 3 56 頁 3.7 Inverse Trigonometric & Hyperbolic Functions

2003/02/25 Chapter 3 57 頁

2003/02/25 Chapter 3 58 頁

2003/02/25 Chapter 3 59 頁

2003/02/25 Chapter 3 60 頁

2003/02/25 Chapter 3 61 頁

2003/02/25 Chapter 3 62 頁

2003/02/25 Chapter 3 63 頁

2003/02/25 Chapter 3 64 頁

2003/02/25 Chapter 3 65 頁 3.7 More on Branch Points & Branch Cuts

2003/02/25 Chapter 3 66 頁 First trip Second trip Third trip

2003/02/25 Chapter 3 67 頁

2003/02/25 Chapter 3 68 頁

2003/02/25 Chapter 3 69 頁

2003/02/25 Chapter 3 70 頁

2003/02/25 Chapter 3 71 頁

2003/02/25 Chapter 3 72 頁

2003/02/25 Chapter 3 73 頁

2003/02/25 Chapter 3 74 頁

2003/02/25 Chapter 3 75 頁

2003/02/25 Chapter 3 76 頁

2003/02/25 Chapter 3 77 頁

2003/02/25 Chapter 3 78 頁

2003/02/25 Chapter 3 79 頁