Martin Isenburg UC Berkeley Jack Snoeyink UNC Chapel Hill Early Split Coding of Triangle Mesh Connectivity.

Slides:



Advertisements
Similar presentations
Progressive Simplicial Complexes Jovan Popovic Carnegie Mellon University Jovan Popovic Carnegie Mellon University Hugues Hoppe Microsoft Research Hugues.
Advertisements

1 Succinct Representation of Labeled Graphs Jérémy Barbay, Luca Castelli Aleardi, Meng He, J. Ian Munro.
I/O and Space-Efficient Path Traversal in Planar Graphs Craig Dillabaugh, Carleton University Meng He, University of Waterloo Anil Maheshwari, Carleton.
Least-squares Meshes Olga Sorkine and Daniel Cohen-Or Tel-Aviv University SMI 2004.
Compact and Low Delay Routing Labeling Scheme for Unit Disk Graphs Chenyu Yan, Yang Xiang, and Feodor F. Dragan (WADS 2009) Kent State University, Kent,
Geometry Compression Michael Deering, Sun Microsystems SIGGRAPH (1995) Presented by: Michael Chung.
The Duals to Benzenoid Systems –Which is a simple circuit of the hexagonal grid and the region bounded by this circuit. Thus, they are subgraphs of the.
Mesh Representation, part II based on: Data Structures for Graphics, chapter 12 in Fundamentals of Computer Graphics, 3 rd ed. (Shirley & Marschner) Slides.
Angle-Analyzer: A Triangle-Quad Mesh Codec Haeyoung Lee USC Mathieu Desbrun USC Pierre Alliez INRIA.
Martin Isenburg University of North Carolina at Chapel Hill Craig Gotsman Technion - Israel Institute of Technology Stefan Gumhold University of Tübingen.
CS CS 175 – Week 4 Mesh Decimation General Framework, Progressive Meshes.
March 2, D Mesh Coding and Transmission Lihang Ying Department of Computing Science University of Alberta.

Jack Snoeyink FWCG08 Oct 31, 2008 David L. Millman University of North Carolina - Chapel Hill.
Compressing Texture Coordinates Martin IsenburgJack Snoeyink University of North Carolina at Chapel Hill with h Selective Linear Predictions.
Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.
Spectral bases for 3D shapes representation. Spectral bases – reminder Last week we spoke of Fourier analysis  1D sine/cosine bases for signals:
Compressing Hexahedral Volume Meshes Martin Isenburg UNC Chapel Hill Pierre Alliez INRIA Sophia-Antipolis.
Streaming Computation of Delaunay Triangulations Jack Snoeyink UNC Chapel Hill Jonathan Shewchuk UC Berkeley Yuanxin Liu UNC Chapel Hill Martin Isenburg.
Large Mesh Simplification using Processing Sequences Martin Isenburg UNC Chapel Hill Peter Lindstrom LLNL Livermore Stefan Gumhold GRIS Tubingen Jack Snoeyink.
Martin Isenburg Jack Snoeyink University of North Carolina Chapel Hill Mesh Collapse Compression.
Martin Isenburg University of North Carolina at Chapel Hill Triangle Fixer: Edge-based Connectivity Compression.
Face Fixer Compressing Polygon Meshes with Properties Martin Isenburg Jack Snoeyink University of North Carolina at Chapel Hill.
Martin Isenburg Jack Snoeyink University of North Carolina at Chapel Hill Reverse Decoding of the Edgebreaker Encoding S PIRALE R EVERSI.
Surface Simplification & Edgebreaker Compression for 2D Cel Animations Vivek Kwatra & Jarek Rossignac GVU Center, College of Computing Georgia Institute.
Lossless Compression of Floating-Point Geometry Martin Isenburg UNC Chapel Hill Peter Lindstrom LLNL Livermore Jack Snoeyink UNC Chapel Hill.
With Parallelogram Prediction Compressing Polygon Mesh Geometry Martin Isenburg UNC Chapel Hill Pierre Alliez INRIA Sophia-Antipolis.
Addressing, Distances and Routing in Triangular Systems with Application in Cellular and Sensor Networks Victor Chepoi, Feodor Dragan, Yan Vaxes University.
Compressing the Property Mapping of Polygon Meshes Martin Isenburg Jack Snoeyink University of North Carolina at Chapel Hill.
Compressing Polygon Mesh Connectivity
Space Efficient Point Location forTriangulations.
Streaming Compression of Triangle Meshes Martin Isenburg University of California at Berkeley Jack Snoeyink University of North Carolina at Chapel Hill.
University of British Columbia Compressing Connectivity.
Martin Isenburg UC Berkeley Streaming Meshes Peter Lindstrom LLNL.
Coding with ASCII: compact, yet text-based 3D content Martin Isenburg Jack Snoeyink University of North Carolina at Chapel Hill and INRIA Sophia-Antipolis.
An Introduction to 3D Geometry Compression and Surface Simplification Connie Phong CSC/Math April 2007.
Topological Surgery Progressive Forest Split Papers by Gabriel Taubin et al Presented by João Comba.
Out-of-Core Compression for Gigantic Polygon Meshes Martin IsenburgStefan Gumhold University of North CarolinaWSI/GRIS at Chapel Hill Universität Tübingen.
Compact Representations of Separable Graphs From a paper of the same title submitted to SODA by: Dan Blandford and Guy Blelloch and Ian Kash.
Compression of Large Engineering 3D Models using Automatic Discovery of Repeating Geometric Features. Compression of Large Engineering 3D Models using.
Compressing Multiresolution Triangle Meshes Emanuele Danovaro, Leila De Floriani, Paola Magillo, Enrico Puppo Department of Computer and Information Sciences.
Succinct Geometric Indexes Supporting Point Location Queries Prosenjit Bose, Eric Y. Chen, Meng He, Anil Maheshwari, Pat Morin.
RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies Tae-Joon Kim Bochang Moon Duksu Kim Sung-Eui Yoon KAIST (Korea Advanced Institute of.
3D Geometry Coding using Mixture Models and the Estimation Quantization Algorithm Sridhar Lavu Masters Defense Electrical & Computer Engineering DSP GroupRice.
Computer Graphics Some slides courtesy of Pierre Alliez and Craig Gotsman Texture mapping and parameterization.
Semi-regular 3D mesh progressive compression and transmission based on an adaptive wavelet decomposition 21 st January 2009 Wavelet Applications in Industrial.
Random-Accessible Compressed Triangle Meshes Sung-eui Yoon Korea Advanced Institute of Sci. and Tech. (KAIST) Peter Lindstrom Lawrence Livermore National.
1 Compressing Triangle Meshes Leila De Floriani, Paola Magillo University of Genova Genova (Italy) Enrico Puppo National Research Council Genova (Italy)
Real-time Rendering of Heterogeneous Translucent Objects with Arbitrary Shapes Stefan Kinauer KAIST (Korea Advanced Institute of Science and Technology)
Computer Graphics Basic 3D Geometry CO2409 Computer Graphics Week 5-1.
Extraction and remeshing of ellipsoidal representations from mesh data Patricio Simari Karan Singh.
Spectral Compression of Mesh Geometry (Karni and Gotsman 2000) Presenter: Eric Lorimer.
Mesh Coarsening zhenyu shu Mesh Coarsening Large meshes are commonly used in numerous application area Modern range scanning devices are used.
1 Compressing TINs Leila De Floriani, Paola Magillo University of Genova Genova (Italy) Enrico Puppo National Research Council Genova (Italy)
04 MPEG-4, 1 Jarek Rossignac, CoC & GVU Center, Georgia Tech SM, June D Compression Jarek Rossignac GVU Center and College of Computing Georgia Tech,
UNC Chapel Hill M. C. Lin Delaunay Triangulations Reading: Chapter 9 of the Textbook Driving Applications –Height Interpolation –Constrained Triangulation.
Efficient Implementation of Real-Time View-Dependent Multiresolution Meshing Renato Pajarola, Member, IEEE Computer Society Christopher DeCoro, Student.
DPL3/10/2016 CS 551/651: Simplification Continued David Luebke
CENG 789 – Digital Geometry Processing 04- Mesh Data Structures
Rossignac, Szymczak, King, Safonova
Surface Approximation with Triangle Meshes
LaBRI, Université Bordeaux I
A Brief History of 3D MESH COMPRESSION ORAL, M. ELMAS, A.A.
CSc4730/6730 Scientific Visualization
Extensions to Edgebreaker
Efficient Edgebreaker for surfaces of arbitrary topology
Succinct Representation of Labeled Graphs
Wavelet-based Compression of 3D Mesh Sequences
Subdivision Surfaces 고려대학교 컴퓨터 그래픽스 연구실 cgvr.korea.ac.kr.
Presentation transcript:

Martin Isenburg UC Berkeley Jack Snoeyink UNC Chapel Hill Early Split Coding of Triangle Mesh Connectivity

Geometry Connectivity – Efficient Rendering – Progressive Transmission – Compact Storage Mesh Compression “Geometry Compression” [ Deering, 95 ] Surface Meshes – triangular – polygonal Volume Meshes – tetrahedral, hexahedral storage / network main memory

Connectivity Triangle Mesh Connectivity v v v v v v v -3.3 – v v f f f f f f f f f f f Geometry each index uses log 2 ( v ) bits  6 log 2 ( v ) bpv  3.24 bpv enumeration of triangulated planar graphs [ Tutte 62 ]

“Out-of-Core Compression”[ Isenburg & Gumhold ‘03 ] “Delphi Coding”[ Coors and Rossignac ‘04 ] “FreeLence”[ Kälberer et al. ‘05 ] Compression Schemes “Cut-Border Machine”[ Gumhold & Strasser ‘98 ] “Triangle Mesh Compression”[ Touma & Gotsman ‘98 ] “Edgebreaker”[ Rossignac ‘99 ] “Face Fixer”[ Isenburg & Snoeyink ‘00 ] “Angle Analyzer”[ Lee, Alliez & Desbrun ‘02 ] “Degree Duality Coder”[ Isenburg ‘02 ] “Near-optimal Coding”[ Khodakovsky et al. ‘02 ] “Valence-Driven Encoding”[ Alliez & Desbrun ‘01 ] Computer Graphics “Succinct encodings of planar graphs”[ He, Yao, & Hu ‘99 ] “Short encodings of planar graphs”[ Keeler & Westbrook ‘95 ] “Succinct Representations of Graphs”[ Turan ‘84 ] “Optimal Coding”[ Poulahlon & Schaeffer ‘03 ] Planar Graph Coding

Connectivity Graph Traversal split offset

Connectivity Graph Traversal

CBM – Edgebreaker – TG coder label-based split offset “Cut-Border Machine”[ Gumhold & Strasser ‘98 ] “Edgebreaker”[ Rossignac ‘99 ] “Early Split Coding” [ this paper ] CRCRRS... RCRERC degree-based “Triangle Mesh Compression” [ Touma & Gotsman ‘98 ] S split offset

CBM and Edgebreaker

5 processed region unprocessed region compression boundary

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C C

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C C R

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C C C R C

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R C C R C R

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S C C R C R S offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C C R C R S L offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C C C R C R S L C offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C C R C R S L C R offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C C C R C R S L C R C offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C C R C R S L C R C R offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C C C R C R S L C R C R C offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R C C R C R S L C R C R C R offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R R C C R C R S L C R C R C R R offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R R R C C R C R S L C R C R C R R R offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R R R L C C R C R S L C R C R C R R R L offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R R R L C C C R C R S L C R C R C R R R L C offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R R R L C R C C R C R S L C R C R C R R R L C R offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R R R L C R R C C R C R S L C R C R C R R R L C R R offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R R R L C R R R C C R C R S L C R C R C R R R L C R R R offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R R R L C R R R S C C R C R S L C R C R C R R R L C R R R S 1 2 offset = 3 offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R C C R C R S L C R C R C R R R L C R R R S R S L C R C R C R R R L C R R R S R offset = 3 offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R R R L C R R R S E R C C R C R S L C R C R C R R R L C R R R S R E offset = 3 offset = 11

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R R R L C R R R S E R E C C R C R S L C R C R C R R R L C R R R S R E E offset = 11 offset = 3

CBM and Edgebreaker 5 processed region unprocessed region compression boundary C C R C R S L C R C R C R R R L C R R R S E R E C C R C R S L C R C R C R R R L C R R R S R E E C offset = 11 offset = = 4 = 12 C...

Subsequences of Labels are self-contained Encodings

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained reversible ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained reversible E E ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R C ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R C L ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R C L R ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R C L R R ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R C L R RR ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R C L R RR C ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R C L R RR C R ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R C L R RR C R C ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R C L R RR C R C R ……

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R C L R RR C R C R …… C

S L C R C R C R R R L C R R R S R E E Subsequences are self-contained E reversible R E S R R R C L R RR C R C R …… C L we did not need split offsets !!!

TG coder

5 processed region unprocessed region compression boundary slot counts

TG coder 5 processed region unprocessed region compression boundary 7 7

TG coder 5 processed region unprocessed region compression boundary zero slot

TG coder 5 processed region unprocessed region compression boundary

TG coder 5 processed region unprocessed region compression boundary zero slot

TG coder 5 processed region unprocessed region compression boundary

TG coder 5 processed region unprocessed region compression boundary S offset = S

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S 7 offset = 18

TG coder 5 processed region unprocessed region compression boundary S S 7 offset = 18 zero slot

TG coder 5 processed region unprocessed region compression boundary S S 7 offset = 18 zero slot

TG coder 5 processed region unprocessed region compression boundary S S 7 offset = 18

TG coder 5 processed region unprocessed region compression boundary S S 7 6 offset = 18

TG coder 5 processed region unprocessed region compression boundary S S 7 6 offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18

TG coder 5 processed region unprocessed region compression boundary S S offset = 18 7 … E

Subsequences of Degrees are not self-contained Encodings

Subsequences are not self-contained … S E … 5 S

5 S Subsequences are not self-contained

… S E … 5 S Subsequences are not self-contained

… S E … 5 S Subsequences are not self-contained

… S E … 5 S Subsequences are not self-contained

… S E … 5 S Subsequences are not self-contained

Not unique without split offsets … S 4 3 E 4 3 E … …

Early Split Coder

encode with labels or degrees traverse triangles in same order – new label W – earlier split operations one-to-one mapping  insights: – how to turn degree subsequences into self-contained encodings – decoding strategy decides success

R C R C C R The new label W

R C C R C C R

R C C R C C R C

R C C R C R C C R wart R C R C C R

The new label W R C R C C R C R C C R C R C C R wart zero slot

The new label W R C R C C R C W R C C R C R C C R wart

The new label W R C R C C R C W C R C C R C R C C R wart

The new label W R C R C C R C W C R R C C R C R C C R wart

The “early split” operation R R C R C

S R R C R C

S R R C R C R

S R R C R C R L

S R R C R C R L R

S R R C R C R L R L zero slot

The “early split” operation S R R C R C R L R L

S R R C R C R L R L

S R R C R C R L R L

S R R C R C R L R L

S R R C R C R L R L R R C R C C

S R R C R C R L R L R R C R C C S zero slot

The “early split” operation S R R C R C R L R L R R C R C C S W zero slot

The “early split” operation S R R C R C R L R L R R C R C C W S W

S R R C R C R L R L R R C R C C W S W C

S R R C R C R L R L R R C R C C W S W C R

S R R C R C R L R L R R C R C C W S W C R R zero slot

The “early split” operation S R R C R C R L R L R R C R C C W S W C R R W

Complete Example

One Scheme & Four Encodings label-based degree-based

Forward Decoding with offsets

V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E zero slot

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E zero slot

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E zero slot

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E zero slot

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Forward Decoding with offsets V 5 V 4 V 5 V 5 V 6 V 6 V 4 V 8 V 5 V 5 S 1,0,0 C C C C R C R C R W C R C S 1 C R R E C R E

Reverse Decoding without offsets

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Reverse Decoding w/o offsets E V 3 E V 4 S V 5 V 5 W V 8 V 4 V 6 V 6 V 5 V 5 E R C E R R C S C R C W R C R C R C C C C

Results

Compression Results

Improving the TG coder 5 “Valence-Driven Encoding”[ Alliez & Desbrun ‘01 ] degree of vertex must be at least 5 ( at least 6 for early-split ) degree of vertex must be at least 4 ( at least 5 for early-split )

Thank You