Process Mining: The next step in Business Process Management Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology Department of Information and Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands & Centre for Information Technology Innovation (CITI) Queensland University of Technology (QUT) Brisbane, Australia
Outline Motivation Overview of process mining –Basic performance metrics –Process models –Organizational models –Social networks –Performance characteristics Process Mining: Some of our tools –EMiT –Thumb –MinSocN Conclusion
Workflow/BPM in The Netherlands “The Netherlands in the country with the highest density of workflow systems per capita” John O'Connell (CEO Staffware) (cf. population density per sq. km 390 versus 2.5 for Australia) Emphasis on process modeling and analysis (the European way) Innovative companies like Pallas Athena, Baan, …
I&T department, Eindhoven University of Technology Embedded in research institute BETA joining multiple disciplines Three subgroups: –Business Process Management (workflow management, Petri nets, mining,...) –ICT Architectures (agents, transactions,...) –Software Engineering (software quality,...) Team working on process mining: Wil van der Aalst, Ton Weijters, Ana Karla Alves de Medeiros, Boudewijn van Dongen, Eric Verbeek, Minseok Song, Monique Vullers- Jansen, Laura Maruster, …
Motivation
25 years of workflow Pioneers like Skip Ellis and Michael Zisman already worked on “office automation” in the 70- ties The WFM hype is over …, but there are more and more applications, it has become a mature technology, and WFM is adopted by many other technologies (ERP, Web Services, etc.). (Zur Muehlen 2003)
Let us reverse the process! Process mining can be used for: –Process discovery (What is the process?) –Delta analysis (Are we doing what was specified?) –Performance analysis (How can we improve?) Particularly interesting in pre- and post-workflow settings! process mining
Process mining: Overview
Classification of process mining The following types of process mining can be distinguished: 1)Determine basic performance metrics 2)Determine process model 3)Determine organizational model 4)Analyze social network (i.e., relations between actors) 5)Analyze performance characteristics (i.e., derive rules explaining performance)
1) basic performance metrics 2) process model3) organizational model4) social network 5) performance characteristics If …then …
(1) Determine basic performance metrics Process/control-flow perspective: flow time, waiting time, processing time and synchronization time. Questions: What is the average flow time of orders? What is the maximum waiting time for activity approve? What percentage of requests is handled within 10 days? What is the minimum processing time of activity reject? What is the average time between scheduling an activity and actually starting it? Resource perspective: frequencies, time, utilization, and variability. Questions: How many times did Sue complete activity reject claim? How many times did John withdraw activity go shopping? How many times did Clare suspend some running activity? How much time did Peter work on instances of activity reject claim? How much time did people with role Manager work on this process? What is the utilization of John? What is the average utilization of people with role Manager? How many times did John work for more than 2 hours without interruption?
Example (ARIS PPM) IDS Scheer's ARIS Process Performance Manager
(2) Determine process model Discover a process model (e.g., in terms of a PN or EPC) without prior knowledge about the structure of the process. case 1 : task A case 2 : task A case 3 : task A case 3 : task B case 1 : task B case 1 : task C case 2 : task C case 4 : task A case 2 : task B case 2 : task D case 5 : task E case 4 : task C case 1 : task D case 3 : task C case 3 : task D case 4 : task B case 5 : task F case 4 : task D (W)
(3) Determine organizational model Discover the organizational model (i.e., roles, departments,etc.) without prior knowledge about the structure of the organization. e.g., correspondence analysis (typically applied in ecology)
(4) Analyze social network Social Network Analysis (SNA) Based on: –Handover of work –Subcontracting –Working together –Reassignments –Doing similar tasks
Example
(5) Analyze performance characteristics Each case (process/workflow instance) has a number of properties: –Resource that worked on a specific activity –Value of a characteristic data element (e.g., size of order, age of customer, etc.) –Performance metrics of case (e.g., flow time) Using machine-learning techniques it is possible to find relevant relations between these properties.
Example If John and Mike work together, it takes longer. Expensive cases require less processing. Etc.
Process mining: The tools EMiT Thumb MinSocN
Process Mining: Tooling
Example: processing customer orders Example in Staffware: 7 tasks and all basic routing constructs
Case 21 Diractive Description Event User yyyy/mm/dd hh:mm Start 2003/02/05 15:00 Register order Processed To 2003/02/05 15:00 Register order Released By 2003/02/05 15:00 Prepare shipment Processed To 2003/02/05 15:00 (Re)send bill Processed To 2003/02/05 15:00 (Re)send bill Released By 2003/02/05 15:01 Receive payment Processed To 2003/02/05 15:01 Prepare shipment Released By 2003/02/05 15:01 Ship goods Processed To 2003/02/05 15:01 Ship goods Released By 2003/02/05 15:02 Receive payment Released By 2003/02/05 15:02 Archive order Processed To 2003/02/05 15:02 Archive order Released By 2003/02/05 15:02 Terminated 2003/02/05 15:02 Case 22 Diractive Description Event User yyyy/mm/dd hh:mm Start 2003/02/05 15:02 Register order Processed To 2003/02/05 15:02 Register order Released By 2003/02/05 15:02 Prepare shipment Processed To 2003/02/05 15:02 Fragment of Staffware log
Fragment of XML file Case start :04 Register order :04
EMiT Focus on time.
Thumb Focus on noise.
Thumb is able to deal with noise (D/F-graphs) causality no noise 10% noise
Representation in terms of an EPC… (collaboration with IDS Scheer)
MinSocN (Mining Social Networks)
Real case: CJIB Processing of fines cases 99 different activities
Process in EMiT
Complete process model Validated by CJIB
Conclusion
Conclusion (1) Process mining is practically relevant and the logical next step in Business Process Management.
Conclusion (2) 1) basic performance metrics 2) process model 3) organizational model4) social network 5) performance characteristics If …then … Process mining provides many interesting challenges for scientists, customers, users, managers, consultants, and tool developers.
More information W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems. MIT press, Cambridge, MA, 2002.
References BPM (just books and far from complete) W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems. MIT press, Cambridge, MA, Workflow Management: Modeling Concepts, Architecture and Implementation by Stefan Jablonski and Christoph Bussler; Paperback: 351 pages; International Thomson Publishing, October Production Workflow: Concepts and Techniques, by Frank Leymann, Dieter Roller, Andreas Reuter; Paperback, 479 pages; Prentice Hall PTR, 1st edition, September Workflow-Based Process Controlling: Foundation, Design and Application of Workflow-Driven Process Information Systems, by Michael Zur Muehlen. Logos, Berlin, 2003 Proceedings of the International Conference on Business Process Management (BPM), Eindhoven, The Netherlands, June 26-27, 2003, by Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske (Editors); Paperback, 391 pages; Springer Verlag, W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2000.
References (2) Internet Based Workflow Management: Towards a Semantic Web by Dan C. Marinescu; Hardcover, 626 pages; John Wiley & Sons, 1st edition, April Web Services, by Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju; Hardcover, 480 pages, Springer Verlag, June The Workflow Imperative, by Thomas M. Koulopolous; Hardcover, 240 pages; Van Nostrand Reinhold, 1st edition, January Database Support for Workflow Management: The WIDE Project, by Paul Grefen, Barbara Pernici, and Gabriel Sanchez (Editors); Hardcover, 296 pages. Kluwer Academic Publishers, February, Design and Control of Workflow Processes: Business Process Management for the Service Industry (Lecture Notes in Computer Science # 2617), by Hajo Reijers; Paperback, 320 pages; Springer Verlag; October Practical Workflow for SAP - Effective Business Processes using SAP's WebFlow Engine, by Alan Rickayzen et al; Hardcover, 52 pages; SAP Press, July Workflow Modeling: Tools for Process Improvement and Application Development, by Alec Sharp and Patrick McDermott, Hardcover, 345 pages; Artech House, 1st edition, February Business Process Modelling With ARIS: A Practical Guide, by Rob Davis; Paperback, 545 ; Springer Verlag, August 2001.
References (3) Workflow Handbook 2003, by Layna Fischer (Editor); Hardcover, 384 pages. Future Strategies, April Specific for process mining: W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering, 47(2): , W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Performance Models from Timed Logs. EDCIS 2002, volume 2480 of Lecture Notes in Computer Science, pages Springer-Verlag, Berlin, A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering, 10(2): , W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special Issue of Computers in Industry, Elsevier Science Publishers, Amsterdam, W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering (to appear).
Appendix: A concrete algorithm
Process Mining: The alpha algorithm alpha algorithm
Process log Minimal information in log: case id’s and task id’s. Additional information: event type, time, resources, and data. In this log there are three possible sequences: –ABCD –ACBD –EF case 1 : task A case 2 : task A case 3 : task A case 3 : task B case 1 : task B case 1 : task C case 2 : task C case 4 : task A case 2 : task B case 2 : task D case 5 : task E case 4 : task C case 1 : task D case 3 : task C case 3 : task D case 4 : task B case 5 : task F case 4 : task D
>, ,||,# relations Direct succession: x>y iff for some case x is directly followed by y. Causality: x y iff x>y and not y>x. Parallel: x||y iff x>y and y>x Choice: x#y iff not x>y and not y>x. case 1 : task A case 2 : task A case 3 : task A case 3 : task B case 1 : task B case 1 : task C case 2 : task C case 4 : task A case 2 : task B case 2 : task D case 5 : task E case 4 : task C case 1 : task D case 3 : task C case 3 : task D case 4 : task B case 5 : task F case 4 : task D A>B A>C B>C B>D C>B C>D E>F ABACBDCDEFABACBDCDEF B||C C||B
Basic idea (1) xyxy
Basic idea (2) x y, x z, and y||z
Basic idea (3) x y, x z, and y#z
Basic idea (4) x z, y z, and x||y
Basic idea (5) x z, y z, and x#y
It is not that simple: Basic alpha algorithm Let W be a workflow log over T. (W) is defined as follows. 1.T W = { t T W t }, 2.T I = { t T W t = first( ) }, 3.T O = { t T W t = last( ) }, 4.X W = { (A,B) A T W B T W a A b B a W b a1,a2 A a 1 # W a 2 b1,b2 B b 1 # W b 2 }, 5.Y W = { (A,B) X (A,B) X A A B B (A,B) = (A,B) }, 6.P W = { p (A,B) (A,B) Y W } {i W,o W }, 7.F W = { (a,p (A,B) ) (A,B) Y W a A } { (p (A,B),b) (A,B) Y W b B } { (i W,t) t T I } { (t,o W ) t T O }, and (W) = (P W,T W,F W ).
Results If log is complete with respect to relation >, it can be used to mine any SWF-net! Structured Workflow Nets (SWF-nets) have no implicit places and the following two constructs cannot be used: (Short loops require some refinement but not a problem.)
Example case 1 : task A case 2 : task A case 3 : task A case 3 : task B case 1 : task B case 1 : task C case 2 : task C case 4 : task A case 2 : task B case 2 : task D case 5 : task E case 4 : task C case 1 : task D case 3 : task C case 3 : task D case 4 : task B case 5 : task F case 4 : task D (W) W