Spin Tunneling and Inversion Symmetry www.physics.ucf.edu/~delbarco E NRIQUE DEL B ARCO Department of Physics – UCF Orlando QCPS II 2009 - Vancouver.

Slides:



Advertisements
Similar presentations
Some New Geometric Phase Effects in Mn 12 Variants Jonathan Friedman Eduardo H. da Silva Neto Michael Foss-Feig Amherst College Funding: NSF, Research.
Advertisements

Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Dynamics of the nuclear spin bath in molecular nanomagnets: a test for decoherence Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Dynamics and thermodynamics of quantum spins at low temperature Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics & Astronomy TRIUMF.
1 Tuning Molecule-mediated Spin Coupling in Bottom-up Fabricated Vanadium-TCNE Nanostructures Daniel Wegner Institute of Physics and Center for Nanotechnology.
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University.
 From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase  LZ probability: P LZ = 1 – exp[-  (  /ħ)
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
Stephen Hill, Saiti Datta and Sanhita Ghosh, NHMFL and Florida State University In collaboration with: Enrique del Barco, U. Central Florida; Fernando.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp, Nicolas Laflorencie Moshe Schechter University.
Center for Quantum Information ROCHESTER HARVARD CORNELL STANFORD RUTGERS LUCENT TECHNOLOGIES Spin effects and decoherence in high-mobility Si MOSFETs.
Low temperature universality in disordered solids In collaboration with: Philip Stamp (UBC) Alejandro Gaita-Arino (UBC) Moshe Schechter Gaita-Arino and.
2002 London NIRT: Fe 8 EPR linewidth data M S dependence of Gaussian widths is due to D-strainM S dependence of Gaussian widths is due to D-strain Energies.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Symmetry Issues E NRIQUE DEL B ARCO, C HRISTOPHER R AMSEY (UCF) S TEPHEN H ILL ( NHMFL and Physics Department, FSU – Tallahassee ) S ONALI J. S HAH, C.
School of Physics & Astronomy FACULTY OF MATHEMATICAL & PHYSICAL SCIENCE Parallel Transport & Entanglement Mark Williamson 1, Vlatko Vedral 1 and William.
Introduction to Single Molecular Magnet
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
2002 Agilent Technologies Europhysics Prize Lecture on Bernard Barbara, L. Néel Lab, Grenoble, France Jonathan R. Friedman, Amherst College, Amherst, MA,
Enhancement of Kondo effect through Rashba spin-orbit interactions. Nancy Sandler Dept. of Physics and Astronomy Ohio University In collaboration with:
Internal Degrees of Freedom and Quantum Tunneling of the Magnetization in Single-Molecule Magnets E NRIQUE DEL B ARCO Department of Physics – UCF Orlando.
Single-ion and exchange anisotropy effects in small single-molecule magnets* Richard A. Klemm University of Central Florida, Orlando, FL USA and Dmitri.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Chirality of Nuclear Rotation S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden, Germany.
Berry Phase Effects on Electronic Properties
Dynamics of the nuclear spin bath in molecular nanomagnets: a test for decoherence Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics.
Stephen Hill NHMFL and Florida State University, Physics Outline of talk: Idea behind the title of this talk Nice recent example: Radical Ferromagnet Mononuclear.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Frustrated Quantum Magnets in Strong Magnetic Fields F. Mila Institute of Theoretical Physics Ecole Polytechnique Fédérale de Lausanne Switzerland.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Rotational spectra of molecules in small Helium clusters: Probing superfluidity in finite systems F. Paesani and K.B. Whaley Department of Chemistry and.
Physics Department, Beijing Normal University
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Quantum Glassiness and Topological Overprotection Quantum Glassiness and Topological Overprotection Claudio Chamon DMR PRL 05, cond-mat/
Quantum response in dissipative environments University of Tokyo S. Miyashita 5 Nov Linear Response 50 Equilibrium & NE response collaborators: Akira.
Order and disorder in dilute dipolar magnets
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Single Molecular Magnets
Single-Molecule Magnets: A Molecular Approach to Nanomagnetism George Christou Department of Chemistry, University of Florida Gainesville, FL ,
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Spin-lattice relaxation of individual lanthanide ions via quantum tunneling Fernando LUIS Orlando December 20 th 2010 Quantum Coherent Properties of Spins-III.
Dirac’s inspiration in the search for topological insulators
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Supported by: US National Science Foundation, Research Corporation, NHMFL, & University of Florida The effect of anisotropy on the Bose-Einstein condensation.
GNSF: KITP: PHY Krakow, June 2008 George Jackeli Max-Planck Institute for Solid State Research, Stuttgart In collaboration with:
Gauge structure and effective dynamics in semiconductor energy bands
Magnetic and Raman response properties in La2CuO4
70th International Symposium on Molecular Spectroscopy
Syntheses of High-spin Molecules
S. Hill, N. Anderson, A. Wilson, S. Takahashi, and J. Lawrence
Stephen Hill, Rachel Edwards Nuria Aliaga-Alcalde and George Christou
Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de.
Chiral Spin States in the Pyrochlore Heisenberg Magnet
Hole Spin Decoherence in Quantum Dots
Hiroyuki Nojiri, Department of Physics, Okayama University
Addition of Angular Momentum
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

Spin Tunneling and Inversion Symmetry E NRIQUE DEL B ARCO Department of Physics – UCF Orlando QCPS II Vancouver

E NRIQUE DEL B ARCO, C HRISTOPHER R AMSEY (UCF) S TEPHEN H ILL ( NHMFL and Physics Department, FSU – Tallahassee ) S ONALI J. S HAH, C HRISTOPHER C. B EEDLE AND D AVID N. H ENDRICKSON (Chemistry Department, UCSD – La Jolla-San Diego) P HILIP C.E. S TAMP AND I GOR T UPITSYN (PITP-Physics, UBC, Vancouver) Nature Physics 4, (2008) Spin Tunneling and Inversion Symmetry

THE MOLECULE [Mn 12 (Adea) 8 (CH 3 COO) 14 ]·7CH 3 CN Rumberger et al., Inorg. Chem. 43, 6531–6533 (2004) /2 S=7

MAGNETIZATION - QTM T c ~0.3K T B ~0.9K S = 7 D = 0.4K T = 0.9K S = 7, D = 0.4 K 50  m wheel axis HLHL m S =

MAGNETIZATION - QTM S = 7, D = 0.4 K Ms =7Ms =7 Ms =6Ms =6 Ms =5Ms =5 H ? HLHL HTHT

[Mn 12 (Adea) 8 (CH 3 COO) 14 ]·7CH 3 CN Rumberger et al., Inorg. Chem. 43, 6531–6533 (2004) /2 S=7 THE MOLECULE

THE MOLECULE [Mn 12 (Adea) 8 (CH 3 COO) 14 ]·7CH 3 CN d* d d d dd d d d d d d avg ~3.17Å d*~3.49Å J ~2-5 cm -1 J* <<J Foguet-Albiol, D. et al., Angew. Chem. Int. Edn 44, 897–901 (2005) Rumberger et al., Inorg. Chem. 43, 6531–6533 (2004).

THE MOLECULE d* Rumberger et al., Inorg. Chem. 43, 6531–6533 (2004). 7/2 7/2 [Mn 12 (Adea) 8 (CH 3 COO) 14 ]·7CH 3 CN

EXCHANGE-COUPLED SPINS QUANTUM TUNNELING BTW. STATES OF DIFFERENT SPIN LENGH

QUANTUM INTERFERENCE HARD BERRY PHASE INTERFERENCE OF TWO COUPLED TUNNELING SPINS BERRY PHASE INTERFERENCE OF TWO COUPLED TUNNELING SPINS HLHL  HTHT

NEW TOPOLOGICAL EFFECT Quantum Tunneling Spin Fe 8 : Wernsdorfer & Sessoli, Science (1999) Mn 12 : del Barco et al., PRL (2003) Mn 12 -tBuAc: da Silva Neto et al., (2008) EXPERIMENTTHEORY Loss et al., PRL (1992) Von Delft et al., PRL (1992) Garg, EPL (1993) Coupled Tunneling Spins SINGLE SPIN Classical spin precession i.e. Wagh et al., PRL (1998) Pancharatnam (1956) (light interference) Berry (1984) (quantal systems) Aharanov and Anandan (1987) (generalization Hilbert space). INTERACTING SPINS Classical coupled-spins precession Sjoqvist, PRA (2000) THEORY (??) Mn 12 wheel: Ramsey et al., Nature Physics (2008) EXPERIMENT

SYMMETRY RULES ANTI-SYMMETRIC TERM NEEDED Dzyaloshinskii–Moriya interaction NOT ALLOWED ON A DIMER MODEL with INVERSION SYMMETRY

SYMMETRY RULES 7/2 7/2 Wernsdorfer, PRB (2008) a - Dimer model identically used in a Mn 6 wheel (CI) b - DM interaction used to explain results Wernsdorfer, PRL (2008) a - Dimer model used in an “identical” Mn 12 wheel b – DM interaction used to explain results Rejected by NP: See our response in arXiv: Wernsdorfer, arXiv: v1,v2,v3 a - Dimer model not valid

SYMMETRY RULES 7/2 7/2 Wernsdorfer, PRB (2008) a - Dimer model identically used in a Mn 6 wheel (CI) b - DM interaction used to explain results Wernsdorfer, PRL (2008) a - Dimer model used in an “identical” Mn 12 wheel b – DM interaction used to explain results Rejected by NP: See our response in arXiv: Wernsdorfer, arXiv: v1,v2,v3 a - Dimer model not valid Wernsdorfer-justification: 1)Disorder 2)Local DM interactions are not forbidden del Barco et al., PRL (2009) 1)Disorder 2)Local DM interactions are not forbidden

SYMMETRY RULES /2 d1d1 center of inversion middle point 7/2 middle point center of inversion D = 0

SYMMETRY RULES 7/2 middle point center of inversion D  0 parallel to z-axis (Ramsey, Nature Physics) D  0 tilted (Wernsdorfer, PRL) The Hamiltonian of the coupled half-wheels: Each half-wheel: Exchange coupling: Symmetric exchange: Antisymmetric exchange (DM interaction):

SYMMETRY RULES /2 d1d1 center of inversion middle point D *  * D  x y z

SYMMETRY RULES /2 d1d1 center of inversion middle point D  x y z D  x y z

SYMMETRY RULES H H Center of Inversion

SYMMETRY RULES /2 d1d1 center of inversion middle point D  x y z D  x y z 2 2 3/2 center of inversion middle point (d’ >J) (d,J)(d,J) D  x y z D  x y z D’ ’ ’’ x y z ’ ’’ x y z

SYMMETRY RULES The Hamiltonian of 4 coupled quarter-wheels: Each quarter-wheel: Exchange coupling: Antisymmetric exchange (DM interaction): Symmetric exchange: Center of inversion symmetry imposes: k = 1(A) is degenerate 2 2 3/2 center of inversion middle point (d’ >J) (d,J)(d,J) D  x y z D  x y z D’ ’ ’’ x y z ’ ’’ x y z

SYMMETRY RULES  

In a centro-symmetric molecule local DM-interactions MUST BE related by inversion symmetry and DO NOT BREAK THE DEGENERACY BETWEEN LEVELS OF OPPOSITIVE PARITY independently of how complex the Hamiltonian is because PARITY (good quantum number) MUST BE CONSERVED

SYMMETRY RULES DM-interactions are important in S = 1/2 systems ONLY SOURCE OF DEGENERACY BREAKING but never mix states of opposite parity in a system with inversion symmetry (Kagome lattice – weak ferromagnetism) when inversion symmetry is not present BOTH SYMMETRIC and ANTISYMMETRIC INTERACTIONS CAN BREAK DEGENERACIES E. del Barco, S. Hill and D. N. Hendrickson, Phys. Rev. Lett. in press (2009) E. del Barco et al., In preparation

/2 d1d1 center of inversion middle point D  x y z D  x y z  Dipolar fields? (Philip?)

CONCLUSIONS Quantum superposition of states with different spin length in a SMM New topological effect: Quantum phase interference of two coupled tunneling spins Local DM interactions in a centro-symmetric SMM do not break the degeneracy between states of opposite parity

Del Barco Lab Low temperature nanomagnetism Single-molecule magnets FM thin films and nanowires Nanoparticles Low temperature nanotransport Molecular spintronics Single-electron transistors Low-dimensional systems i.e. graphene, nanowires, i.e. graphene, nanowires, nanoparticles, molecules,… nanoparticles, molecules,… Physics collaborations Stephen Hill (NHMFL-FSU) Masa Ishigami, Robert Peale, Lee Chow (UCF) Agustin Camon, Fernando Luis (UZ-Spain) Javier Tejada (UB-Spain) Oliver Waldmann (U.Freiburg-Germany) Andrew Kent (NYU) XiXiang Zhang (KAUST) Eduardo Mucciolo, Michael Leuenberger (UCF) Philip Stamp, Igor Tupitsyn (UBC-Canada) Chemistry collaborations David Hendrickson (UCSD) George Christou (UF) Eugenio Coronado (UV-Spain) Florenzio Hernandez (UCF) Joel Miller (UU)

[Mn 12 (Adea) 8 (CH 3 COO) 14 ].7CH 3 CN S = 7/2 + 7/2 [Mn 12 (Edea) 8 (CH 3 CH 2 COO) 14 ] S = 7 [Mn 12 (Edea) 8 (CH 3 COO) 2 (CH 3 CH 2 COO) 12 ] S = 7 d* d d d d d d d*/d avg = 1.100d*/d avg = 1.093d*/d avg = <>SISTER MOLECULES J*/J avg >><<