Demand Management and Forecasting. Types of Forecasts Qualitative Time Series Causal Relationships Simulation.

Slides:



Advertisements
Similar presentations
Forecasting.
Advertisements

Forecasting OPS 370.
Forecasting the Demand Those who do not remember the past are condemned to repeat it George Santayana ( ) a Spanish philosopher, essayist, poet.
Operations Management For Competitive Advantage © The McGraw-Hill Companies, Inc., 2001 C HASE A QUILANO J ACOBS ninth edition 1Forecasting Operations.
Forecasting Demand for Services
T T18-03 Exponential Smoothing Forecast Purpose Allows the analyst to create and analyze the "Exponential Smoothing Average" forecast. The MAD.
Forecasting 5 June Introduction What: Forecasting Techniques Where: Determine Trends Why: Make better decisions.
Qualitative Forecasting Methods
Forecasting Ross L. Fink.
Forecasting IME 451, Lecture 2. Laws of Forecasting 1.Forecasts are always wrong! 2.Detailed forecasts are worse than aggregate forecasts! Dell forecasts.
1 Forecasting BA 339 Mellie Pullman. What is a Forecast? What and why might we wish to forecast?What and why might we wish to forecast?
CHAPTER 3 Forecasting.
Chapter 3 Forecasting McGraw-Hill/Irwin
FORECASTING. Types of Forecasts Qualitative Time Series Causal Relationships Simulation.
Operations Management R. Dan Reid & Nada R. Sanders
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Forecasting Operations Chapter 12 Roberta Russell & Bernard.
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
T T18-06 Seasonal Relatives Purpose Allows the analyst to create and analyze the "Seasonal Relatives" for a time series. A graphical display of.
FORECASTING Operations Management Dr. Ron Lembke.
Mr. David P. Blain. C.Q.E. Management Department UNLV
Slides 13b: Time-Series Models; Measuring Forecast Error
LSS Black Belt Training Forecasting. Forecasting Models Forecasting Techniques Qualitative Models Delphi Method Jury of Executive Opinion Sales Force.
Samuel H. Huang, Winter 2012 Basic Concepts and Constant Process Overview of demand forecasting Constant process –Average and moving average method –Exponential.
Group No :- 9 Chapter 7 :- Demand forecasting in a supply chain. Members : Roll No Name 1118 Lema Juliet D 1136 Mwakatundu T 1140 Peter Naomi D 1143 Rwelamila.
Chapter 15 Demand Management & Forecasting
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall7-1 Chapter 7: Forecasting.
Introduction to Forecasting COB 291 Spring Forecasting 4 A forecast is an estimate of future demand 4 Forecasts contain error 4 Forecasts can be.
Demand Management and Forecasting
Forecasting OPS 370.
$$ Entrepreneurial Finance, 5th Edition Adelman and Marks 6-1 Pearson Higher Education ©2010 by Pearson Education, Inc. Upper Saddle River, NJ Chapter.
Forecasting MD707 Operations Management Professor Joy Field.
DSc 3120 Generalized Modeling Techniques with Applications Part II. Forecasting.
Operations Management For Competitive Advantage 1Forecasting Operations Management For Competitive Advantage Chapter 11.
$$ Entrepreneurial Finance, 4th Edition By Adelman and Marks PRENTICE HALL ©2007 by Pearson Education, Inc. Upper Saddle River, NJ Chapter 6.
Introduction to Forecasting IDS 605 Spring Forecasting 4 A forecast is an estimate of future demand.
1-1 1 McGraw-Hill/Irwin ©2009 The McGraw-Hill Companies, All Rights Reserved.
Forecasting Operations Management For Competitive Advantage.
Demand Management and Forecasting Module IV. Two Approaches in Demand Management Active approach to influence demand Passive approach to respond to changing.
Operations Fall 2015 Bruce Duggan Providence University College.
Forecasting. 預測 (Forecasting) A Basis of Forecasting In business, forecasts are the basis for budgeting and planning for capacity, sales, production and.
Forecasting Chapter 9. Copyright © 2013 Pearson Education, Inc. publishing as Prentice Hall Define Forecast.
Copyright ©2016 Cengage Learning. All Rights Reserved
1 Chapter 13 Forecasting  Demand Management  Qualitative Forecasting Methods  Simple & Weighted Moving Average Forecasts  Exponential Smoothing  Simple.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved. 1.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Demand Management and Forecasting CHAPTER 10.
Forecasting Demand. Forecasting Methods Qualitative – Judgmental, Executive Opinion - Internal Opinions - Delphi Method - Surveys Quantitative - Causal,
MGS3100_03.ppt/Feb 11, 2016/Page 1 Georgia State University - Confidential MGS 3100 Business Analysis Time Series Forecasting Feb 11, 2016.
DEPARTMENT OF MECHANICAL ENGINEERING VII-SEMESTER PRODUCTION TECHNOLOGY-II 1 CHAPTER NO.4 FORECASTING.
Quantitative Forecasting Methods (Non-Naive)
Forecasting Demand for Services. Learning Objectives l Recommend the appropriate forecasting model for a given situation. l Conduct a Delphi forecasting.
1 1 Chapter 6 Forecasting n Quantitative Approaches to Forecasting n The Components of a Time Series n Measures of Forecast Accuracy n Using Smoothing.
CHAPTER 12 FORECASTING. THE CONCEPTS A prediction of future events used for planning purpose Supply chain success, resources planning, scheduling, capacity.
Forecasting Demand. Problems with Forecasts Forecasts are Usually Wrong. Every Forecast Should Include an Estimate of Error. Forecasts are More Accurate.
Assignable variation Deviations with a specific cause or source. forecast bias or assignable variation or MSE? Click here for Hint.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Forecasting.
Demand Management and Forecasting Chapter 11 Portions Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Forecast 2 Linear trend Forecast error Seasonal demand.
Demand Forecasting Production and Operations Management Judit Uzonyi-Kecskés Research Assistant Department of Management and Corporate Economics Budapest.
Chapter 11 – With Woodruff Modications Demand Management and Forecasting Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
3-1Forecasting Weighted Moving Average Formula w t = weight given to time period “t” occurrence (weights must add to one) The formula for the moving average.
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
Operations Management Contemporary Concepts and Cases
Mechanical Engineering Haldia Institute of Technology
Forecasting techniques
Demand Management and Forecasting
Module 2: Demand Forecasting 2.
Forecasting Elements of good forecast Accurate Timely Reliable
Presentation transcript:

Demand Management and Forecasting

Types of Forecasts Qualitative Time Series Causal Relationships Simulation

Qualitative Methods Grass Roots Market Research Panel Consensus Executive Judgment Historical Analogy Delphi Method Qualitative Methods Prediction Markets

d=

Quantitative Approaches Naïve (time series) Moving Averages (time series) Exponential Smoothing (time series) Trend Projection (time series) Linear Regression (causal)

Naïve Method This period’s forecast = Last period’s observation Crude but effective August sales = 1000; September sales = ?? 1000!

Moving Averages This period’s forecast = Average of past n period’s observations Example: for n = 3: Sales for Jan through March were 100, 110, 150 April forecast = ( )/3 = 120

Example

Evaluating Forecasts Concept: Forecast worth function of how close forecasts are to observations Mean Absolute Deviation (MAD) MAD = sum of absolute value of forecast errors / number of forecasts (e.g. periods) äMAD is the average of the absolute value of all of the forecast errors.

Weighted Moving Averages This period’s forecast = Weighted average of past n period’s observations Example: for n = 3: Sales for Jan through March were 100, 110, 150 Suppose weights for last 3 periods are:.5 (March),.3 (Feb), and.2 (Jan) April forecast =.5*150+.3*110+.2*100 = 128

Exponential Smoothing New Forecast = Last period’s forecast + alpha * (Last period’s actual observation - last period’s forecast) Mathematically: F(t) = F(t-1) + alpha * [A(t-1) - F(t-1)], where F is the forecast; A is the actual observation, and alpha is the smoothing constant -- between 0 and 1 Example: F(t-1) = 100; A(t-1) = 110; alpha = Find F(t) F(t) = 104 Can add parameters for trends and seasonality

Trend Projections Use Linear regression Model: yhat = a + b* x a = y-intercept: forecast at period 0 b = slope: rate of change in y for each period x Example: Sales = * t, where t is period For t = 15, Find yhat -- yhat = 250 Can find and a and b via Method of Least Squares

Linear Regression Model: yhat = a + b1 * x1 + b2 * x2 + … + bk * xk a = y-intercept bi = slope: rate of change in y for each increase in xi, given that other xj’s are held constant Example: College GPA = HS GPA HS SAT For a HS student with a 3.0 GPA and 1200 SAT - what is the forecast? The forecast college GPA = 2.90 Can find a, b1, and b2 via Method of Least Squares