Optical Pumping Intense light source at h  (e.g. flash lamp) Excites to a metastable state to achieve population inversion With fast flashing, initial.

Slides:



Advertisements
Similar presentations
Lasers 2.71/2.710 Optics (Laser lecture) 12/12/01-1.
Advertisements

Femtosecond lasers István Robel
Optical sources Lecture 5.
Measuring the Speed of Light Jack Young Rich Breazeale Ryan Phelan.
X-rays & LASERs Section 31-7 Physics 1161: Lecture 24.
PHYS 252 Lasers1 Lasers What is stimulated emission? Well, there are two types of light emission that can occur with atoms! The kind that we have been.
THE LASER IDEA Consider two arbitrary energy levels 1 and 2 of a given material, and let N 1 and N 2 be their respective populations. If a plane wave with.
Introduction to Lasers 자연과학부 나종훈. 목 차 LASER 의 시초 Atomic Structure Transitions between Laser states Population Inversion Pulsed Operation Power and Energy.
General Properties of Light Light as a wave Speed Wave properties: wavelength, frequency, period, speed, amplitude, intensity Electromagnetic wave.
Light Amplification by Stimulated
Ruby Laser Crystal structure of sapphire: -Al2O3 (aluminum oxide). The shaded atoms make up a unit cell of the structure. The aluminum atom inside the.
Modern Communication Systems Optical Fibre Communication Systems
1.3 Cavity modes Axial modes λ = 2d / n ν = nc / 2d n = 2d / λ
EM Radiation Sources 1. Fundamentals of EM Radiation 2. Light Sources
Eugene Hecht, Optics, Addison-Wesley, Reading, MA, Light Amplification in Resonance Cavity Highly collimated beam Typically ~mm beam width, ~mrad.
Spectroscopy 2: Electronic Transitions CHAPTER 14.
Coherence Factors that compromise coherence: 1. thermal fluctuations 2. vibrational fluctuations 3. emission of multiple wavelengths 4. multiple longitudinal.
1.2 Population inversion Absorption and Emission of radiation
EM Radiation Sources 1. Fundamentals of EM Radiation 2. Light Sources 3. Lasers.
Overall Ingle and Crouch, Spectrochemical Analysis.
Absorption and emission processes
The Amazing World of Lasers Alexey Belyanin Department of Physics, TAMU Laser Definition and History Laser Radiation Laser System –Active Medium and Pump.
Light Emission. Today’s Topics Excitation Emission Spectra Incandescence –Absorption Spectra.
Neodymium:YAG Laser Nd3+ in yttrium-aluminum-garnet (Y3Al5O12)
Light Emission. Today’s Topics Excitation Emission Spectra Incandescence –Absorption Spectra.
Interference Diffraction and Lasers
Chapter 5: Wave Optics How to explain the effects due to interference, diffraction, and polarization of light? How do lasers work?
Lasers, Yeah They Look Cool, But How Do They Work? Brought To You Buy: STEVE KESSLER & DANNY GOEPFERT.
Laser Principle Eman Ali Ateeq.
By Alex Ellis.
Optics, Eugene Hecht, Chpt. 13;
TYPES OF LASER Solid State lasers:Ruby laser, Nd:YAG laser, Nd:Glass laser Gas lasers:He-Ne laser, CO 2 laser, Argon laser Liquid/Dye lasers:Polymethene.
1 Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
SINGLE-FREQUENCY OPERATION Consider an argon laser that has a relatively large bandwidth, allowing a large number of longitudinal modes (with slightly.
B.SC.II PAPER-B (OPTICS and LASERS) Submitted by Dr. Sarvpreet Kaur Assistant Professor PGGCG-11, Chandigarh.
An Introduction. The first step on the road to laser was the publication of paper by Albert Einstein in 1916 –describing how atoms could interact with.
1 P1X: Optics, Waves and Lasers Lectures, Lasers and their Applications i) to understand what is meant by coherent and incoherent light sources;
 Different from a neon light radiating in any directions, a laser is a beam of coherent light radiating in the same direction with high intensity and.
ECE 455: Optical Electronics Lecture #9: Inhomogeneous Broadening, the Laser Equation, and Threshold Gain Substitute Lecturer: Tom Spinka Tuesday, Sept.
Chapter 10. Laser Oscillation : Gain and Threshold
PUMPING SCHEMES how to produce a population inversion in a given material? To achieve this an interaction of the material with a sufficiently strong em.
Solution Due to the Doppler effect arising from the random motions of the gas atoms, the laser radiation from gas-lasers is broadened around a central.
Transverse modes The distribution of the radiation intensity beam across the cross sectional area perpendicular to the optical laser axis has different.
PHYSICS DEPARTMENT.
LASERS. LASER is an acronym for light amplification by Stimulated Emission of radiation. When radiation interacts with matter we have three processes.
1LASER is a short form of a) Light amplification by stimulated absorption radiation b) Light amplification by stimulated emission of radiation c) Light.
1.Stable radiation source 2.Wavelength selector 3.Transparent sample holder: cells/curvettes made of suitable material (Table 7- 2) 4.Radiation detector.
Resonant Optical Cavities Laser Cavity Gain, Gain Coefficient Optical feedback Condition for oscillation Losses Standing waves Oscillation modes and resonant.
LASER LASER stands for LIGHT APLIFICATION by STIMULATED EMISSION of RADITIONS First laser was constructed by Maiman Laser action has been obtained with.
Medical Physics Students
4-Level Laser Scheme nn  m  →  n  excitation  n  →  m  radiative decay slow  k  →  l  fast(ish)  l  →  m  fast to maintain population.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
LINE-BROADENING MECHANISMS
SHRI DADAJI INSTITUTE OF TECHNOLOGY & SCIENCE A SEMINAR ON LASER COMMUNICATION PRESENTED BY: HITESH SILARPURIYA E.C. FOURTH SEM.
Laserlaser. Laser printer Laser pointer Laser: everywhere in your life.
Helium-neon Laser.
Historical facts The Helium-Neon laser was the first continuous laser.
Light-Matter Interaction
Light Amplification by Stimulated
MEDICAL LASER SYSTEMS Assist Prof. Dr. Lutfi Ghulam Awazli
Origin of The Electromagnetic (EM) Waves
Physics 1161: Lecture 24 X-rays & LASERs Section 31-7.
والصلاة والسلام على سيدنا ونبينا محمد صل الله (الليزر) فكرة عمل الليزر
4-Level Laser Scheme The general view was that it would be impossible or at least very difficult to achieve population inversion relative to the ground.
Physics 1161: Lecture 24 X-rays & LASERs Section 31-7.
LASERS By Swapan Das.
Helium-Neon Laser TIT GROUP Of INSTITUTIONS, BHOPAL [M.P.] By
Laser oscillation Laser is oscillator
PRINCIPLE AND WORKING OF A SEMICONDUCTOR LASER
Rayat Shikshan Sanstha’s S. M. Joshi College, Hadapsar
Presentation transcript:

Optical Pumping Intense light source at h  (e.g. flash lamp) Excites to a metastable state to achieve population inversion With fast flashing, initial photons start chain reaction Eugene Hecht, Optics, Addison-Wesley, Reading, MA, 1998.

Electrical Discharge Accelerated e - and ions excite atoms/molecules into higher energy states Common in gas lasers Ingle and Crouch, Spectrochemical Analysis

Three - Level System No saturation Not very efficient Better for pulsed mode operation Ingle and Crouch, Spectrochemical Analysis

The ruby laser is a three – level laser Eugene Hecht, Optics, Addison-Wesley, Reading, MA, Commercial ruby laser operates with efficiency ~ 1%

Four - Level System More efficient than 3-level Laser transition does not involve ground state or most highly excited state Easier to achieve population inversion Ingle and Crouch, Spectrochemical Analysis

The He – Ne laser is a four – level laser He* + Ne → He + Ne* + ΔE

Resonance Cavity and Gain Ingle and Crouch, Spectrochemical Analysis Gain = degree of amplification based on positive feedback

Gain Gain (G) = e  (n j -n i )b  = transition cross-section b = length of active medium Oscillation begins when: gain in medium = losses of system  1  2 G 2 = 1 Threshold population inversion: Ingle and Crouch, Spectrochemical Analysis

Eugene Hecht, Optics, Addison-Wesley, Reading, MA, Light Amplification in Resonance Cavity Highly collimated beam Typically ~mm beam width, ~mrad divergence A typical photon travels about 50 times forward and backward within the cavity

Mirror Arrangements Eugene Hecht, Optics, Addison-Wesley, Reading, MA, 1998.

Are you getting the concept? Knowing that the purpose of the resonance cavity is to direct the majority of the photons back through the active medium, what cavity characteristics will be most important?

Achieving Resonance Stimulated emission is coherent (all light waves in phase) If the cavity is an integer multiple of the wavelength, each wave will be at the same phase when it reflects from one of the cavity mirrors (recall that a photon make many round trips in a laser cavity before it is emitted). This allows constructive interference between all photons. Want: m = 2nL Other wavelengths will not be strongly amplified, and thus, will die out. In practice, laser transitions have gain over a range of wavelengths – the gain bandwidth… so that resonance cavity lengths are not impossible to achieve.

Achieving Resonance Goal: Laser cavity where L = m /2 This condition is not as strict as it sounds because: 1.Laser transitions have gain over a range of wavelengths 2.Any integer multiple (longitudinal mode) of will work Amp = (1+Gain) L Estimate amplification factor:

Longitudinal Modes Eugene Hecht, Optics, Addison-Wesley, Reading, MA, Actual is the convolution of the transition bandwidth and the of the longitudinal modes.

Transverse Modes and Transverse modes determine the pattern of intensity distribution across the width of the beam. TEM 00 has a Gaussian distribution and is the most commonly used. The resonator geometry of many commercial lasers is designed to obtain “single transverse mode” operation.