1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

1 MICE Beamline: Plans for initial commissioning. Kevin Tilley, 16 th November. - 75days until commissioning Target, detectors, particle production Upstream.
Expected counting rates. FRS experimental setup Total load is limited by SC1 and MUSIC1.
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
197 A u at the End of the Dragon Evan O’Connor University of PEI August 2 nd, 2006.
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
Studying the  p-process at ATLAS Catherine M. Deibel Joint Institute for Nuclear Astrophysics Michigan State University Physics Division Argonne National.
S. Sidorchuk (JINR, Dubna) Dubna Radioacive Ion Beams DRIBsIII: STATUS and PROSPECTS S. Sidorchuk (JINR, Dubna) 9-16 May 2013, Varna, Bulgaria 1.
Mass Analyzer of SuperHeavy Atoms Some recent results 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
APS-DNP Fall20041 Design Studies for RIA Fragment Separators A.M. Amthor National Superconducting Cyclotron Laboratory, Michigan State University Department.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 106 nd Session, 24 September 2009, Dubna.
Possibility of bringing TRI  P to HIE-ISOLDE Dual magnetic Spectrometer Olof TENGBLAD ISCC Oct. 22nd 2013 There will be a presentation during the ISOLDE.
TRImP in-flight separator, ion catcher and RFQ cooler/buncher
Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.
SUPERB Separator for Unique Products of Experiments with Radioactive Beams Matt Amthor Bucknell University ReA12 Recoil Separator Workshop – July 12, 2014.
Abstract The 13 N(p,γ) 14 O reaction is very important for our understanding of explosive astrophysical sites, such as novae and supernovae. This reaction.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
Mats Lindroos Measuring difficult reaction rates involving radioactive beams: A new approach John D’Auria, Mats Lindroos, Jordi Jose and Lothar Buchmann.
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
23 July 2010FLNR Dubna Summer Students Practice Flerov Laboratory of Nuclear Reactions, JINR, Dubna 2010 JINR, Dubna 2010 Studies with radioactive ion.
SHMS Optics Studies Tanja Horn JLab JLab Hall C meeting 18 January 2008.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
PSI July 2002MuEGamma Review Meeting1 Beam Line Status update 1.  E5 Test Beam Overview : Aims + RequirementsAims + Requirements Zone Layout + Measurement.
2. RUTHERFORD BACKSCATTERING SPECTROMETRY Basic Principles.
B-1 Fragmentation – 0 Introduction Generalities Isotopic distributions Neck emission Participant-spectator model Fragment separators LISE of GANIL FRS.
A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
RITU and the new separator at Jyväskylä J. Uusitalo, J. Sarén, M. Leino RITU and γ-groups University of Jyväskylä, Department of Physics.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
This project is funded by the NSF through grant PHY , and the Universities of JINA. The Joint Institute for Nuclear Astrophysics Henderson DUSEL.
ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Test of PRISMA in Gas Filled Mode B.Guiot for PRISMA collaboration INFN – Laboratori Nazionali di Legnaro.
Implantation rates at the focal plane of Super-FRS Some Simulations for AIDA Detectors.
The NSCL is funded in part by the National Science Foundation and Michigan State University. RIA R&D is funded in part by the U.S. Department of Energy.
Lecture 4 - E. Wilson - 23 Oct 2014 –- Slide 1 Lecture 4 - Transverse Optics II ACCELERATOR PHYSICS MT 2014 E. J. N. Wilson.
TRI  P project & facility TRI  P separator Status & future plans TRI  P SEPARATOR: STATUS & FUTURE TRI  P Krakow 3-6 June 2004 Andrey Rogachevskiy.
Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
A realistic simulation of the AGATA Demonstrator +PRISMA Spectrometer Elif INCE, Istanbul University 7 th AGATA Week, July 2008.
Accelerator Laboratory, Physics Department (JYFL) University of Jyväskylä P.O. Box 35 (YFL) FI Jyväskylä Finland MARA recoil-mass separator at JYFL.
Ancillary/Complementary detectors for the AD at LNL.
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. Hashimoto, H. Tokieda, T. Tsuji, S. Kawase,
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS
Collimation Concept for Beam Halo Losses in SIS 100
IF Separator Design of RAON
Simulation of Luminosity Variation
A.Smirnov, A.Sidorin, D.Krestnikov
of secondary light ion beams
of secondary light ion beams
On the ARIEL Pre-separator
Beam dynamics of Super-FRS and MM requirements
Vamos + Exogam Spectrometer
Variable Mode High Acceptance Spectrometer
Study of the resonance states in 27P by using
K. Tilley, ISIS, Rutherford Appleton Laboratory, UK Introduction
MEBT1&2 design study for C-ADS
Daniela Henzlova GSI-Darmstadt, Germany
Status and perspectives of the LNS-FRIBS facility
Presentation transcript:

1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg

2 The Lecture Series 1 st Lecture: 9/30/05, 2:00 pm: Definitions, Formalism, Examples 2 nd Lecture: 10/7/05, 2:00 pm: Ion-optical elements, properties & design 3 rd Lecture: 10/14/05, 2:00 pm: Real World Ion-optical Systems 4 th Lecture: 12/2/05, 2:00 pm: Separator Systems, Part 1 5 th Lecture: 12/9/05, 2:00 pm: Separator Systems, Part 2

3 5 th Lecture 5 th Lecture: 12/2/05, 2:00 pm Separator Systems Electric Dipoles in Recoil Separator Dragon & EMMA Wien Filter in Recoil Separators Recoil separators ERNA and ARES for astrophysics A “no-field” separation method: the Wedge In-flight isotope separators TRI  P and A1900 Gas-filled separators Astrophysics recoil separator St. George

4 DRAGON Recoil Separator with Electric Dipoles Ref. Dragon Recoil Separator Optics, The Recoil Group, 1/18/1999,TRIUMF Study of astrophyscis reactions using radioactive beams: e.g. 21 Na  p,  ) 22 Mg in inverse kinematics using a radioactiv 21 Na beam of 4.62 MeV to study NeNa cycle

5 DRAGON Ion-optics Ref. J. M. D’Auria et al. TRIUMF MD1ED1MD2ED2

6 EMMA Recoil Separator for ISAC-II at TRIUMF B. Davids, TRIUMF & C. Davids, ANL

7 ERNA Recoil Separator with Wien Filters Study of the astrophysicial reaction 12 C ,  ) 16 O in inverse kinematics 4 He  12 C,  ) 16 O at E cm = 0.7 MeV WF in beam line to remove 16 O contaminant in 12 C beam ERNA Recoil Separator with 2 Wien Filters WF3, WF4

8 ERNA Recoil Separator with Wien Filters Ion-optics of 16 O 3 + and 6 + ions 3 rd order calculations using COSY Infinity 12 C beam mainly stopped in Faraday cup between QS1 and MD  

9 ARES Recoil Separator with a Wien Filter Study of astrophyscis reactions using radioctive beams. Example: Hot CNO breakout reaction 19 Ne  p,  ) 20 Na in inverse kinematics using a radioactive 19 Ne beam of 10.1 MeV Ref. M. Couder, PhD Thesis July 2004, Louvain-La-Neuve

10 Achromatic magnet separator Figure from Experimental Techniques at NSCL, MSU, Th. Baumann, 8/2/2002 Exercise 4: Assume foci at I & F, i.e. A 12 = B 12 = 0. Derive the first order achromatic condition of the system 0  F and compare with the dispersion matching condition. AB ^ Dispersive Intermediate focal plane, B  = p/q selection using slits ^ Achromatic Final focal plane, small beam spot e.g. for detector system

11 Solution of Exercise 4 x I = A 11 x 0 + A 12  0 + A 16  0 | A 12 = 0 = A 11 x 0 + A 16  0 x F = B 11 x I + B 12  I + B 16  0 | B 12 = 0 = B 11 x I + B 16  0 | substitute x I using (33) = B 11 (A 11 x 0 + A 16  0 ) + B 16  0 = B 11 A 11 x 0 + (B 11 A 16 + B 16 )  0 (33) Condition for achromaticity: A 16 = - B 16 / B 11 Note: This is the Dispersion Matching condition for C = T = 1 First order TRANSPORT Matrix R 

12 AB ^ 0.1 mm  E Si-detector 20 mm diameter Achromatic magnet separator ^ B  = p/q selection  p/p 0 range selection for similar velocities v m/q selection, for fully stripped ions A/Z selection Example: Production of 21 Na via H( 21 Ne,n) 21 Na with 21 Ne 7+ beam at 43MeV/nucleon using the TRI  P Separator, KVI Groningen Ions after target fully stripped e.g. 21 Ne 10+ ! 21 Ne beam with  ions/s with B  ( 21 Ne)/ B  ( 21 Na)  is all but eliminated by a slit (SH2) in front of plane I 21 Ne 20 Ne 22 Na 18 F 16 O 19 F 17 O 19 Ne = 2.0  2.1  1.9 A/Z = Note: Ions with A/Z ~ 2 are not separated !  E Si-detector TOF rel. to cyclotron RF

13 Achromatic magnet separator with Wedge Figure from Experimental Techniques at NSCL, MSU, Th. Baumann, 8/2/2002 A B ^ E-loss in WEDGE  E ~ Z 2 /v 2 Isotopes with different Z have different velocities v Therefore A/Z selection in B Effect of “Wedge”   “Wedge” = 0.1 mm “Si=detector” Note: For large dp/p) the degrader should be Wedge-shaped to restore achromaticity effected by degrader with constant thickness

14 TRI  P an achromatic secondary beam separator meter Design parameters SH = Slits Q = Quadrupoles B = Dipoles Section A Section B Wedge/  E-Si  E-Si detector

15 TRI  P ion-optics

16 A1900 MSU/NSCL Fragment Separator Ref. B.Sherrill, MSU

17 Gas-filled separators Concept M. Paul et al. NIM A 277 (1989) 418 Rays in a magn. dipole field without and with gas-filling Measured spectra as function of gas pressure (e.g. He, Ar) PROBLEM: After target, a distribution of several charge states q exists for low E or large Z, with B  range typically larger than acceptance causing transmission losses. REMEDY: gas-filled separator

18 TRI  P ion-optics Section B A “long” achromatic separator system is not suitable for a gas-filled separator that should be “short” to reduce statistical E spread and have “large dispersion” Therefore: The TRI  P separator was Designed to be able operate with Section A as beam line & Section B as short gas-filled separator with large dispersion ^ z = 9.8 m

19 Charge state distribution in TRI  P separator with gas-filling Ar gas pressure 5 mbar Vacuum: Torr 206 Pb, 7 MeV/A

20 RAYTRACE with gas-filling Modified RAYTRACE code used to calculate the separation of beam to demonstrate particle and beam separation in the TRI  P separator in Gas-Filled Mode Ra Pt RaPb

21 Recoil Separator St. George Study of (  ) and (p,  ) of astrophysics importance, for A <  targets, emphasis on low energies, i.e. very small cross sections, max. energy given by KN An overview of reaction result in the following DESIGN PARAMETERS Maximum magnetic rigidity B  : 0.45 Tm Minimum magnetic rigidity B  : 0.10 Tm Momentum acceptance dp: +/- 3.7 % Angle acceptance, horiz & vert.: +/- 40 mrad Further design considerations: Two phase construction Charge selection by B  analysis (typical: 50% Transmission) High mass resolution (  m/m  1 st phase with 2 Wien Filters) Higher mass resolution (  m/m  2nd phase Wien Filters for mass resolution (energy too low for “Wedge” method

22 Schematic Floorplan St. George Phase 1 Windowless Gas target Wien Filters 1 & 2 TOF & E-detectors Momentum & charge selection slits KN beam

23 Horizontal ion-optics St. George Wien Filters 1 & 2 B1B2B3B4

24 Vertical ion-optics St. George

25 End Lecture 5

26 TRI  P ion-optics 1 st & 2 nd Section