Relativistic Heavy Ions Experiment I. The QCD Phasediagram.

Slides:



Advertisements
Similar presentations
University of Birmingham
Advertisements

Charm and beauty with ALICE at LHC
1 Gianluca Usai – University of Cagliari and INFN Electromagnetic Probes of Strongly interacting Matter in ECT* Trento - 23/05/2013 The QCD phase diagram.
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
The Physics of Dense Nuclear Matter
Nuclear matter 1) Introduction 2) Nuclear matter in the ground state 3) Hot and dense nuclear matter 4) State equation of nuclear matter 5) Phase diagram.
Jet probes of nuclear collisions: From RHIC to LHC Dan Magestro, The Ohio State University Midwest Critical Mass October 21-22, 2005.
Results from PHENIX on deuteron and anti- deuteron production in Au+Au collisions at RHIC Joakim Nystrand University of Bergen for the PHENIX Collaboration.
Henrik Tydesjö May O UTLINE - The Quark Gluon Plasma - The Relativistic Heavy Ion Collider (RHIC) The PHENIX Experiment - QGP Signals Event-by-Event.
The fundamental nature of matter and forces Physics 114 Spring 2004 – S. Manly.
Mini Bang at Big Accelerators Prashant Shukla Institute of Physics University of Heidelberg Presentation at ISA, 30 January 2005, Heidelberg, Germany.
Open Charm Everard CORDIER (Heidelberg) Grako meeting HD, April 28, 2006Everard Cordier.
Thermal Photons and Dileptons Workshop BNL, August 20-22, 2014 Itzhak Tserruya Dilepton Experiments – Overview (From √s NN = 2 GeV up to 7 TeV)
March 1, 2003University of Rochester - Graduate Student Days1 Nuclear Physics at the University of Rochester Steven Manly Grad. Student Days March 1, 2003.
1 ALICE Status Orlando Villalobos Baillie University of Birmingham NuPECC Meeting Edinburgh 10 th October 2014.
In-Kwon YOO Pusan National University Pusan, Republic of KOREA Suggestion of Heavy Ion Physics Analysis Center.
Christina Markert Physics Workshop UT Austin November Christina Markert The ‘Little Bang in the Laboratory’ – Accelorator Physics. Big Bang Quarks.
New states of matter ? (QGP, wQGP, sQGP, bsQGP, CGC,…) New probes
RHIC R.K. CHOUDHURY BARC. Relativistic Heavy Ion Collider at Brookhaven National Laboratory (BNL), USA World’s First Heavy Ion Collider became.
RHIC Physics and the importance of particle identification R. Bellwied (Wayne State University)
ISMD31 / Sept. 4, 2001 Toru Sugitate / Hiroshima Univ. The 31 st International Symposium on Multiparticle Dynamics on 1-7, Sept in Datong, China.
Dec Heavy-ion Meeting ( 홍병식 ) 1 Introduction to CBM Contents - FAIR Project at GSI - CBM at FAIR - Discussion.
The Physics of CBM Volker Friese GSI Darmstadt CBM-China Workshop, Beijing, 2 November 2009.
12/12/2010 LHC First Data 2010 – Ann Arbor, USA J.L. Klay 1 A first glimpse down the rabbit hole: status of ALICE after one year Jennifer Klay California.
In-Kwon YOO Pusan National University Busan, Republic of KOREA SPS Results Review.
Soft Physics at RHIC Michal Šumbera Nuclear Physics Institute AS CR, Řež/Prague (for the STAR and PHENIX Collaborations) 1 Hadron Collider Physics Symposium.
Summer Student Practice, Dubna, 2009 Analysis of UrQMD Data Obtained for Relativistic Au+Au Collisions at 17.3 GeV for STAR detector F. Nemulodi, M.W.
Recent results on Quark Gluon Plasma and Future Plans
Epiphany H.R. Schmidt - GSI Status and Prospects of the CERN-LHC Experiment ALICE Physics Issues –Experimental Conditions –Signals & Observables.
G. Musulmanbekov, K. Gudima, D.Dryablov, V.Geger, E.Litvinenko, V.Voronyuk, M.Kapishin, A.Zinchenko, V.Vasendina Physics Priorities at NICA/MPD.
The Quark-Gluon Plasma and Jet Quenching Marco van Leeuwen.
HIGGS BOSON – ON YOUR OWN T. Csörgő 1 | 17 T. Csörgő Wigner RCP, Budapest, Hungary wigner.mta.hu.
1 Part 1: Free the quarks! Part 2: Measuring dimuons in heavy-ion collisions Part 3: “The dog that didn’t bark” and other scenes from the particle zoo.
Hadron Collider Physics 2012, 12/Nov/2012, KyotoShinIchi Esumi, Univ. of Tsukuba1 Heavy Ion results from RHIC-BNL ShinIchi Esumi Univ. of Tsukuba Contents.
Report from India Topical Conference on Hadron Collider Physics XIII Jan 14-20, TIFR, India Naohito Saito RIKEN/ RIKEN BNL Research Center.
Physics of Dense Matter in Heavy-ion Collisions at J-PARC Masakiyo Kitazawa J-PARC 研究会、 2015/8/5 、 J-PARC.
U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 0 Study of the Quark Gluon Plasma with Hadronic Jets What:
 Big questions  why are quarks confined inside protons ? artist’s view :)  what does the vacuum look like ?  can we use understanding.
AAAS Symposia Nuclear Matter at the Highest Energies and Densities James Nagle Columbia University James Nagle Lepton and Dilepton Production: Current.
Robert Pak (BNL) 2012 RHIC & AGS Annual Users' Meeting 0 Energy Ro Robert Pak for PHENIX Collaboration.
C H I C Charm in Heavy Ion SPS 1.J/  – Suppression in A+A 2.CHIC – Physics motivations 3.CHIC – Experimental aspects 1F. Fleuret - LLR.
Axel Drees The Experimental Challenge STAR l ONE central Au+Au collision at RHIC l production of MANY secondary particles PHENIX.
1 ALICE A Large Ion Collider Experiment. 2 ALICE An experiment dedicated to the study of nucleus-nucleus collisions at LHC… An experiment dedicated to.
Nu XuDirector’s Review, LBNL, May 17, 20061/23 Future Program for Studying Bulk Properties in High-Energy Nuclear Collisions Nu Xu.
Nu Xu1/20STAR Regional Meeting, VECC, India, November, 2008 STAR Experiment STAR at RHIC Nu Xu Lawrence Berkeley National Laboratory.
News from ALICE Jan PLUTA Heavy Ion Reaction Group (HIRG) Warsaw University of Technology February 22, XIII GDRE Workshop, SUBATECH, Nantes.
Relativistic Nuclear Collisions (RNC) Group Nuclear Science Division (NSD), Lawrence Berkeley National Lab The Relativistic Nuclear Collisions (RNC) group.
1/41 From High-Energy Heavy-Ion Collisions to Quark Matter Episode I : Let the force be with you Carlos Lourenço, CERN CERN, August, 2007.
Results from ALICE Christine Nattrass for the ALICE collaboration University of Tennessee at Knoxville.
Christoph Blume, Dubna Aug. 2012
Chester - Sept Russell Betts 1 The Experimental Challenge Adapting the Techniques of Particle Physics to Measuring 100  more Particles per.
Review of Heavy-Ion Results from the CERN LHC David Evans The University of Birmingham ICTDHEP Jammu, September 2013.
Toru Sugitate / Hiroshima / PHX032 / The JHF Workshop at KEK on Dec , 2001 Physics at High Baryon Density Region Toru Sugitate Hiroshima University.
05/23/14Lijuan Ruan (BNL), Quark Matter The low and intermediate mass dilepton and photon results Outline: Introduction New results on dileptons.
Relativistic Nuclear Collisions (RNC) Group Nuclear Science Division (NSD), Lawrence Berkeley National Lab Large Hadron Collider (LHC) Spin physics program.
 Lecture I  Physics Motivation for the HL-LHC  Lecture II  An overview of the High-Luminosity upgrade of the LHC  Lecture.
Perfect Fluid of Quarks - 40 th of Rubik’s Cube T. Csörgő Károly Róbert College, Gyöngyös, Hungary
Google Earth for FAIR The Compressed Baryonic Matter Subhasis Chattopadhyay VECC-Kolkata, India 1.
Recent Results from ALICE E. Vercellin Dipartimento di Fisica dell’Università di Torino and INFN Torino.
Multi-Strange Hyperons Triggering at SIS 100
Review of ALICE Experiments
CBM and the nuclear matter EOS
The 'Little Bang’ in the Laboratory - Physics at the LHC
A heavy-ion experiment at the future facility at GSI
Global Beam Energy Scan Global Beam Energy Scan
Looking for the Quark-Gluon Plasma
Current Heavy Ion Physics Experiments and Results Survey
A Large Ion Collider Experiment
Perspectives on strangeness physics with the CBM experiment at FAIR
Relativistic heavy ion collisions
Presentation transcript:

Relativistic Heavy Ions Experiment I

The QCD Phasediagram

Overview Lecture 1) Experiments in (ultra-)relativistic heavy ion physics Lecture 2) Global observables Lecture 3) Strangeness + heavy flavour Lecture 4) Photons and neutral mesons

Literature C. Y. Wong, “Introduction to High-Energy Heavy-Ion Collisions”, World Scientific J. Rafelski and J. Letessier, “Hadrons and Quark-Gluon Plasma”, Cambridge University Press K. Yagi, T. Hatsuda and Y. Miake, “Quark Gluon Plasma”, Cambrigde University Press E. Shuryak, “The QCD Vacuum, Hadrons and Superdense Matter”, World Scientific R. C. Hwa, X. N. Wang, “Quark Gluon Plasma 3”, World Scientific Publishing

Experiments in (ultra-)relativistic heavy ion physics Lecture 1)

Accelerators in Relativistic Heavy Ion Physics AcceleratorPlaceHI-PeriodsMax. EnergyProjectilesExperiments BevalacLBNL, Berkeley < 2 AGeV C, Ca, Nb, Ni, Au,... Plastic Ball, Streamer Chamber, EOS, DLS Synchro-PhasotronJINR, Dubna > 100 AMeV AGSBNL, Brookhaven /11.5 AGeVSi, AuE802,..., E917 SPSCERN, Geneva /158 AGeVO, S, In, PbNA34,..., WA80,... SISGSI, Darmstadt today2 AGeVKr, AuFOPI, KAOS, HADES RHICBNL, Brookhaven2000 – today  s NN = 200 GeVCu,Au STAR, PHENIX, BRAHMS, PHOBOS LHCCERN, Geneva2007(8)  s NN = 5.5 TeVO, Ar, PbALICE, CMS, ATLAS SIS300GSI, Darmstadt2014?  30/45 AGeVNi, AuCBM NuklotronJINR, Dubna?~5 AGeV

Fixed Target Experiments at Relativistic Energies Beam energies: 100A MeV  2A GeV Pioneering experiments  BEVALAC: Plastic Ball and Streamer Chamber ( )  Syncho-Phasotron – Dubna (1975 – 1985) 2 nd generation experiments  SIS-GSI: FOPI, KAOS, HADES (1990 – today)  BEVALAC: EOS-TPC, DLS (1990 – 1992) Physics:  Collective effects  Discovery and investigation of flow effects  Equation of state (EOS)  Study of compressibility of dense nuclear matter  In-medium modifications  Kaons, low mass di-leptons Basic result:  Nuclear matter can be compressed and high energy densities can be achieved

BEVALAC

Heavy Ion Experiments at the BEVALAC ExperimentTechnologyObservables Plastic BallPhoswich scinitllator array Spectra ( , p, d, t, 3 He) Collective phenomena Correlations Streamer Chamber Streamer chamber in magnetic fieldCharged particles EOSTPC in magnetic field Spectra ( , p, fragments) Collective phenomena Correlations DLS2 arm e + e - spectrometerDi-lepton spectrum

BEVALAC – Experiments: Plastic Ball

BEVALAC Experiments: Streamer Chamber

SIS, GSI ExperimentTechnologyObservables FOPIDrift chamber (+ TOF)  , p, fragments KAOSMagnetic spectrometer + TOF  , K  HADESMagnetic spectrometer + RICH and TOFDi-Leptons

Fixed Target Experiments at Ultra-Relativistic Energies Beam energies: 2A GeV – 200A GeV Objective: Search for a Quark-Gluon Plasma (QGP) state 1 st generation: “not-so-heavy” ion  SPS-CERN, projectiles: 16 O and 32 S, E lab max = 200A GeV (1986 – 1993)  AGS-BNL, projectiles: 28 Si, E lab max = 14.5A GeV (1986 – 1991) 2 nd generation: heavy ions  SPS-CERN, projectiles: 208 Pb, E lab max = 158A GeV (1994 – 2002)  AGS-BNL, projectiles: 197 Au, E lab max = 11.5A GeV (1992 – 1994) Physics:  Signatures of a QGP (e.g. strangeness enhancement, J/  suppression, etc.)  Systematic studies (energy dependence)  look for onset phenomena Basic result:  Observations consisten with QGP hypothesis, but no unambigous evidence

BNL Accelerator Complex

Heavy Ion Experiments at the AGS ExperimentBeamTechnologyObservables E802 Si Single arm magnetic spectrometerSpectra ( , p, K  ), HBT E810TPCs in magnetic fieldStrangeness (K 0 s,  ) E814Magnetic spectrometer + calorimetersSpectra (p) + E t E859E nd level PID triggerStrangeness (  ) E866 Au 2 magnetic spectrometers (TPC, TOF)Strangeness (Kaons) E877Upgrade of E814 E891Upgrade of E810 E895EOS TPCSpectra ( , p, K  ), HBT E896Drift chamber + neutron detectorH 0 Di-baryon,  E910EOS TPC + TOFp+A Collisions E917 Upgrade of E866

E895 AGS (EOS-TPC)

E866 AGS

CERN Accelerator Complex

North Area SPS LHC West Area PS

Heavy Ion Physics at the SPS /200A GeV 158A GeV 80A GeV 40A GeV 30A GeV 20A GeV 158A GeV Heavy-Ion Beams: 114 In 208 Pb 12 O/ 32 S Experiments: NA38 NA36 NA35 NA34 WA85 WA80 / WA93 WA94 WA97 WA98 NA44 NA45/CERES NA49 NA50 NA57 NA60 NA52

Heavy Ion Experiments at the SPS ExperimentBeamTechnologyObservables NA34 16 O, 32 S Muon spectrometer + calorimeterDi-leptons, p, , K,  NA35Streamer chamber  -, K 0 s, , HBT NA36TPCK 0 s,  NA38Di-muon spectrometer (NA10)Di-leptons, J/  WA80/WA93Calorimeter + Plastic Ball ,  0,  WA85Mag. spectrometer with MWPCsK 0 s, ,  WA94WA85 + Si strip detectorsK 0 s, ,  NA44 16 O, 32 S, 208 Pb Single arm magnetic spectrometer , K , p NA45Cherenkov + TPCDi-leptons (low mass) NA Pb Large volume TPCs , K , p, K 0 s, , , ,... NA50NA38 upgradeDi-leptons, J/  NA52Beamline spectrometerStrangelets WA97Mag. spectrometer with Si trackerh -, K 0 s, , ,  WA98Pb-glass calorimeter + mag. spectrom. ,  0,  NA57WA97 upgradeh -, K 0 s, , ,  NA InNA50 + Si vertex trackerDi-leptons, J/ 

SPS: S+Au, 200A GeV

13m SPS: Pb+Pb, 158A GeV

SPS

SPS

Collider Experiments at the Relativistic Heavy Ion Collider Center-of-mass energy:  s NN = 200 GeV Objective: Search for a Quark-Gluon Plasma (QGP) state Projectiles: 197 Au, Cu (2000 – today) Physics:  Signatures of a QGP  New observables accessible: high-p t suppression, strong flow phenomena Basic result:  Stronger evidence for the existence of a QGP phase  Strongly coupled QGP (sQGP)

Heavy Ion Experiments at RHIC ExperimentTechnologyObservables STAR TPC and Si vertex tracker (+ EMCAL, TOF) , K , p, K 0 s, , , ,... PHENIX Drift chambers, calorimeter, RICH, TOF, muon spectrometer ,  0, , J/ , K , p,... BRAHMS2 arm magnetic spectrometer , K , p (large acceptance) PHOBOSMagnetic spectrometer with Si tracker charged particles (large acceptance)

RHIC: Au+Au,  s NN = 200GeV

PHENIX Detector

RHIC: Au+Au,  s NN = 200GeV

BRAHMS and RHIC BRAHMS: PHOBOS:

Future Experiments LHC (2007  )  Center-of-mass energy:  s NN = 5.5 TeV (collider)  Projectiles: 208 Pb, lighter ions, protons  Physics: Detailed study of deconfined matter  Jets, heavy flavour, photons  Experiments: ALICE, CMS, ATLAS FAIR (2014  )  Beam energies: E lab max = 30 – 45A GeV (fixed target)  High beam intensities  rare probes (D-meson, J/  )  Physics: Baryonic matter with high densities, critical point  Experiment: CBM Other activities  RHIC at lower energies (~10 GeV   s NN  200 GeV): STAR, PHENIX experiments  Continuation of SPS fixed target program: NA49 upgrade, NA60

The Large Hadron Collider (LHC)

Geneva Mont Blanc CERN

Heavy Ion Experiments at LHC ExperimentTechnologyObservables ALICE TPC and Si vertex tracker, TRD, EMCAL, TOF, and muon spectrometer , K , p, K 0 s, , , , ,  0, J/ ,  CMS Si tracker, muon spectrometer, calorimeter Charged particles, J/ ,  ATLAS Straw tube tracker, muon spectrometers, calorimeter Charged particles, J/ , 

LHC L3-Magnet Magnetic field: max. 0.5T Weight: ~7000 tons Height: 10 m L3-Magnet Magnetic field: max. 0.5T Weight: ~7000 tons Height: 10 m

LHC

Heavy FAIR

FAIR