描述統計 描述統計(Descriptive Statistics)-將蒐集到的資料加以整理和記錄,並以數字和統計圖表的方式來分析及解釋資料所具有的特性. 基本統計值(平均數,中位數,標準差,變異量….) 相關性測量(卡方,相關係數,迴歸…)

Slides:



Advertisements
Similar presentations
資料蒐集的方法(三):實驗法(實驗設計) (第七章)
Advertisements

McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
Event Sampling 事件取樣法. 關心重點為「事件」本身明確的焦點 行為 清楚掌握主題 - 當「事件」出現時才開 始記錄 記錄程序 等待目標事件的發生 開始記錄 事件結束,停止記錄.
Advanced Chemical Engineering Thermodynamics
社研法助教課, 2007/04/11 如何閱讀 SPSS 圖表 (迴歸分析篇) By 黃昱珽. 小考題目 大華用 SPSS 得到以下的資料: (圖表見下面) 說明 : BABYMORT = 嬰兒死亡率, GDP_CAP = 一國國民生產毛額, LIT_FEMA = 女性識字率。 資料來源 : 聯合國,
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 參 實驗法.
1 政治大學財政所與東亞所選修 -- 應用計量分析 -- 中國財政研究 黃智聰 政治大學財政所與東亞所選修 課程名稱:應用計量分析 -- 中國財政研究 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G.
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Stat_chi21 類別資料 (Categorical data) 一種質性資料, 其觀察值可歸類於數個不相交的項目內, 例 : 性別, 滿意度, …, 一般以各項的統計次數表現. 分析此種資料,通常用卡方檢定 類別資料分析 卡方檢定 卡方檢定基本理論 一個含有 k 項的試驗,設 p i.
©Ming-chi Chen 社會統計 Page.1 社會統計 第十講 相關與共變. ©Ming-chi Chen 社會統計 Page.2 Covariance, 共變量 當 X, Y 兩隨機變數不互為獨立時,表示 兩者間有關連。其關連的形式有很多種, 最常見的關連為線性的共變關係。 隨機變數 X,Y.
消費者物價指數反映生活成本。當消費者物價指數上升時,一般家庭需要花費更多的金錢才能維持相同的生活水準。經濟學家用物價膨脹(inflation)來描述一般物價持續上升的現象,而物價膨脹率(inflation rate)為物價水準的變動百分比。
Section 2.3 Least-Squares Regression 最小平方迴歸
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
第 4 章 迴歸的同步推論與其他主題.
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容:利用分公司之追蹤資料進行企業決策分析 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
模式要適配,需符合絕對、比較及精簡,加上內在結構標準
Department of Air-conditioning and Refrigeration Engineering/ National Taipei University of Technology 模糊控制設計使用 MATLAB 李達生.
1 政治大學東亞所選修 -- 計量分析與中國大陸研究黃智聰 政治大學東亞所選修 課程名稱:計量分析與中國大陸研究 (量化分析) 授課老師:黃智聰 授課內容:時間序列與橫斷面資料的共用 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
信度.
© The McGraw-Hill Companies, Inc., 2008 第 6 章 製造流程的選擇與設計.
1 政治大學公企中心必修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學公企中心必修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G. G.
1 開南大學公管所與國企所合開選修課 -- 量化分析與應用 -- 黃智聰 開南大學公管所與國企所合開選修課 課程名稱:量化分析與應用 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 貳 研究設計.
Chapter 13 塑模靜態觀點:物件圖 Static View : Object Diagram.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
第三部分:研究設計 ( 二): 研究工具的信效度 與研究效度 (第九章之第 306 頁 -308 頁;第四章)
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容: 質化因素在企業決策分析之重要性 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
選舉制度、政府結構與政 黨體系 Cox (1997) Electoral institutions, cleavage strucuters, and the number of parties.
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
第二十一章 研究流程、論文結構        與研究範例 21-1  研究流程 21-2  論文結構 21-3  研究範例.
緒論 統計的範圍 敘述統計 推論統計 有母數統計 無母數統計 實驗設計 統計的本質 大量 數字 客觀.
Fugacity Coefficient and Fugacity
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
Introduction to Chemical Engineering Thermodynamics
資料結構實習-一 參數傳遞.
政治大學公企中心必修課-- 社會科學研究方法(量化分析)--黃智聰
Structural Equation Modeling Chapter 1 模式存在與否之需,見仁見智; 但是,人無模式,就無決策 SEM 概論.
方案設計 —評估考核 張 紉.
變異數分析 迴歸分析 因素分析 區別分析 集區分析
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
Chapter 3 Entropy : An Additional Balance Equation
Structural Equation Modeling Chapter 6 CFA 根據每個因素有多重指標,以減少 測量誤差並可建立問卷的構念效度 驗證性因素分析.
Chapter 8 The logic of hypothesis testing. 假設檢定 假設檢定 (hypothesis testing) 是利用對樣本 統計量 (sample statistics) 進行檢定已決定 對母體叁數 (population parameters) 的假設 是否成立.
Unit 3 : 變異數分析 --ANOVA 3.1 範例說明 行銷研究方面, One-Way ANOVA 可 用以研擬市場區隔及目標選擇策略。 教育研究方面,此一模式可用以評估 教師之教學績效。 農業研究方面,此一模式則可用以挑 選使玉米收穫量極大化的肥料。
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
Chapter 7 Sampling Distribution
Cluster Analysis 目的 – 將資料分成幾個相異性最大的群組 基本問題 – 如何衡量事務之間的相似性 – 如何將相似的資料歸入同一群組 – 如何解釋群組的特性.
Chapter 6 Introduction to Inference 推論簡介. Chapter 6 Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Making Sense.
連續隨機變數 連續變數:時間、分數、重量、……
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 壹 企業研究導論.
Teacher : Ing-Jer Huang TA : Chien-Hung Chen 2015/6/30 Course Embedded Systems : Principles and Implementations Weekly Preview Question CH7.1~CH /12/26.
Regression 相關 –Cross table –Bivariate –Contingency Cofficient –Rank Correlation 簡單迴歸 多元迴歸.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
Ch 11 建立研究工具的效度與信度.
幼兒行為觀察與記錄 第八章 事件取樣法.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
Chapter 12 Estimation 統計估計. Inferential statistics Parametric statistics 母數統計 ( 母體為常態或 大樣本 ) 假設檢定 hypothesis testing  對有關母體參數的假設,利用樣本資料,決定接受或 不接受該假設的方法.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Presentation transcript:

描述統計 描述統計(Descriptive Statistics)-將蒐集到的資料加以整理和記錄,並以數字和統計圖表的方式來分析及解釋資料所具有的特性. 基本統計值(平均數,中位數,標準差,變異量….) 相關性測量(卡方,相關係數,迴歸…)

相關性測量 基本邏輯-proportionate reduction of error (PRE) (消減錯誤的比例) → 一變項的資訊也許可減少推測另一變項數值時可能產生的錯誤.

散佈圖(Sattergram) 如何看散佈圖呢? 1.Form(形式):直線還是曲線?集中還是分散? 2.Direction(方向): 正相關還是負相關? 3.Precision:圖中各點的分佈是趨向一直線還是曲線呢?

相關 兩量化變數直線關係的強度和方向 數值介於-1~1之間

相關係數圖表

(線性)迴歸分析 目的: 1.瞭解自變數與依變數的關係及影響方 向和程度 2.利用自變數和估計的方程式對依變項作預測

迴歸模型的評判 迴歸模型配適度(迴歸模型解釋力如何?) → R2 :可解釋變異佔總變異的比例 → F檢定:檢定整個迴歸模型的解釋能力 對迴歸係數作檢定,以瞭解各自變數對依變數是否有解釋能力(自變數對依變數是否有直線性的影響) → t值檢定

迴歸係數的解讀 簡單迴歸 y_hat=α +βx → 當x變動一單位時,y變動β單位 複迴歸 y_hat=α +β1x1+ β2x2 解釋係數時,千萬記得加入“單位”.

(題目範例請參見考古題,作業一,及迴歸分析考題) 迴歸分析其他注意要點 為避免加入過多的自變項所產生的R-square值提高,我們會加入自由度來進行調整R-square值.(Spss結果顯示為“調整後的R2 ”) 自變數間的共線性問題,可透過相關係數的檢驗來取得初步的認識.若自變數間具有共線性,擇一放入迴歸模型中即可.變項選擇的標準可斟酌研究所需及遺漏值多寡. 若想比較各自變數對依變數影響的相對重要性,須採用“標準化迴歸係數”來進行比較.(因各自變項的單位不一,故須將係數標準化後才能進行比較) (題目範例請參見考古題,作業一,及迴歸分析考題)

推論統計 推論統計(Inferential Statistics)-以從樣本獲得的資料和統計量來對母體進行推論. 區間估計:對未知的母體參數估計出一個上下限的區間,並指出該區間包含母體參數的可靠程度. → 信賴區間;信賴水準 假設檢定:對母體參數(特性)提出假設,並利用樣本統計量去檢定,以決定接受或拒絕該假設.

統計顯著性 為何要做假設檢定? → 機率樣本由隨機過程產生,多少與母體有所差異,然而,樣本結果是因機率因素或抽樣誤差所導致的,還是母體本身的問題,則必須進一步透過假設檢定來檢驗. 統計顯著性-結果不是因為機率因素或抽樣誤差所產生的.

顯著程度 顯著程度:樣本結果由機率因素產生的機會 Results are significant at the 0.05 level: 像這樣的結果是因機率因素產生的,在100次中只會出現5次 樣本產生的結果有百分之95的機會不是由機率因素產生的,而是正確反應出母體的情形 像這樣的結果是因機率因素產生的機會是5% 我們有95%的信心母體內真實的相關性造成了觀察到的結果,而不是由機率造成的

Type I and Type II Errors 實際情況 H0為真 H1為真 決策 不拒絕H0 No error Type II Errors 拒絕H0 Type I error

卡方檢定 描述統計的意義:兩變數相關性的強度 推論統計的意義:我們發現的相關性,是由機率因素造成的可能性 實際範例請參見“迴歸分析考試”的題目1,或者課程ppt.

其他提醒 量化與質化分析的異同比較 測量的品質-信度和效度 編碼簿的製作及編碼方式 變數類型與統計方式 小組的研究簡述 (研究題目,研究問題,研究發現與限制,未來如何繼續進行..)