Chapter Four Utility. Utility Functions u A preference relation that is complete, reflexive, transitive and continuous can be represented by a continuous.

Slides:



Advertisements
Similar presentations
Chapter Four Utility. Preferences - A Reminder u x y: x is preferred strictly to y.  x  y: x and y are equally preferred. u x y: x is preferred at least.
Advertisements

Chapter 4 Utility Functions. Utility Ordinal Utility: The only property of a utility assignment is “how it orders the bundles of goods.” The size of the.
Chapter 3. * Prerequisite: A binary relation R on X is said to be Complete if xRy or yRx for any pair of x and y in X; Reflexive if xRx for any x in X;
Combinations (X1, Y1) and (X2, Y2) provide the same level of utility
Consumer Choice From utility to demand. Scarcity and constraints Economics is about making choices.  Everything has an opportunity cost (scarcity): You.
Chapter Five Choice. Economic Rationality u The principal behavioral postulate is that a decisionmaker chooses its most preferred alternative from those.
PREFERENCES AND UTILITY
Axioms of Rational Choice
Chapter Six Demand. Income Changes u A plot of quantity demanded against income is called an Engel curve.
Chapter Four Utility. Utility Functions   A utility function U(x) represents a preference relation if and only if: x’ x” U(x’) > U(x”) x’ x” U(x’)
Utility.
Chapter Three Preferences.
Consumers’ preferences
Chapter Five Choice. Economic Rationality u The principal behavioral postulate is that a decisionmaker chooses its most preferred alternative from those.
Axioms of Rational Choice
Utility Functions A utility function U(x) represents a preference relation if and only if: x’ x” U(x’) > U(x”) x’ x” U(x’) < U(x”) x’  x” U(x’) = U(x”).
Chapter Three Preferences. Rationality in Economics u Behavioral Postulate: A decisionmaker always chooses its most preferred alternative from its set.
Utility.
Chapter Five Choice.
Chapter Three Preferences. Rationality in Economics u Behavioral Postulate: A decisionmaker always chooses its most preferred alternative from its set.
Preferences. Preference Relation The consumer strictly prefers bundle X to bundle Y: The consumer is indifferent between X and Y:
Chapter Four Utility.
1 Chapter 3 PREFERENCES AND UTILITY Copyright ©2005 by South-Western, a division of Thomson Learning. All rights reserved.
Utility. Utility Functions u Utility is a concept used by economists to describe consumer preferences. u Utility function is a function that assigns a.
Course: Microeconomics Text: Varian’s Intermediate Microeconomics 1.
Chapter Three Preferences. Rationality in Economics u Behavioral Postulate: An economic decisionmaker always chooses her most preferred alternative from.
The Indifference Curve Analysis is an alternative explanation of the consumer’s behaviour. It is an alternative in two respects : Different assumptions.
Chapter 5 Choice.
1 Welcome to EC 209: Managerial Economics- Group A By: Dr. Jacqueline Khorassani Week Four.
© 2010 W. W. Norton & Company, Inc. 4 Utility. © 2010 W. W. Norton & Company, Inc. 2 Preferences - A Reminder u x y: x is preferred strictly to y.  x.
Chapter 4 Utility.
Course: Microeconomics Text: Varian’s Intermediate Microeconomics 1.
Chapter 3: Consumer Preferences and the Concept of Utility
Chapter 3 Consumer Preferences.
Indifference Curves Locus of points representing different bundles of two goods, each of which yields the same level of total utility. It is a graphical.
Consumer Preferences and the Concept of Utility
1 Chapter 3 PREFERENCES AND UTILITY Copyright ©2005 by South-Western, a division of Thomson Learning. All rights reserved.
Chapter 3 Preferences.
© 2010 W. W. Norton & Company, Inc. 3 Preferences.
1 Preferences Molly W. Dahl Georgetown University Econ 101 – Spring 2009.
© 2010 W. W. Norton & Company, Inc. 4 Utility. © 2010 W. W. Norton & Company, Inc. 2 Preferences - A Reminder u x y: x is preferred strictly to y.  x.
CDAE Class 4 Sept. 6 Last class: 1.Introduction 2.Preferences and choice Class exercise 1 Today: 2. Preferences and choice Next class: 2.Preferences.
L03 Utility. Big picture u Behavioral Postulate: A decisionmaker chooses its most preferred alternative from the set of affordable alternatives. u Budget.
Chapter 4 UTILITY.
Chapter Four Utility 效用.
Budgetary and Other Constraints on Choice
L04 Choice. Big picture u Behavioral Postulate: A decisionmaker chooses its most preferred alternative from the set of affordable alternatives. u Budget.
L03 Utility. Quiz How much do you like microeconomics A: I love it (unconditionally) B: I cannot live without it C: I would die for it D: All of the above.
Chapter 4 Utility Utility: conceptually an indicator of a person’s overall well-being How do we quantify? Can we do interpersonal comparisons? What does.
UTILITY. Chapter 11 What is Utility? A way of representing preferences Utility is not money (but it is a useful analogy) Typical relationship between.
Preferences and Utility
Chapter 3 Preferences Intermediate Microeconomics:
4 Utility.
L03 Utility.
L03 Utility.
3 Preferences.
Chapter 4 Utility Key Concept: Utility, an indicator of a person’s overall well-being We only use its ordinal property in most cases. Marginal utility.
Chapter Three Preferences.
Chapter Six Demand.
Preferences and Utility
Chapter Four Utility.
L03 Utility.
L03 Utility.
Chapter 3 Preferences.
L03 Utility.
Utility Functions f ~ p p
Subject:Economics Class:1st Semester
Presentation transcript:

Chapter Four Utility

Utility Functions u A preference relation that is complete, reflexive, transitive and continuous can be represented by a continuous utility function. u Continuity means that small changes to a consumption bundle cause only small changes to the preference level.

Utility Functions   A utility function U(x) represents a preference relation if and only if: x’ x” U(x’) > U(x”) x’ x” U(x’) < U(x”) x’  x” U(x’) = U(x”). ~   

Utility Functions u Utility is an ordinal (i.e. ordering) concept. u E.g. if U(x) = 6 and U(y) = 2 then bundle x is strictly preferred to bundle y. But x is not preferred three times as much as is y.

Utility Functions & Indiff. Curves u Consider the bundles (4,1), (2,3) and (2,2).  Suppose (2,3) (4,1)  (2,2). u Assign to these bundles any numbers that preserve the preference ordering; e.g. U(2,3) = 6 > U(4,1) = U(2,2) = 4. u Call these numbers utility levels. 

Utility Functions & Indiff. Curves u An indifference curve contains equally preferred bundles. u Equal preference  same utility level. u Therefore, all bundles in an indifference curve have the same utility level.

Utility Functions & Indiff. Curves U  6 U  4 U  2 x1x1 x2x2

Utility Functions u There is no unique utility function representation of a preference relation. u Suppose U(x 1,x 2 ) = x 1 x 2 represents a preference relation. u Again consider the bundles (4,1), (2,3) and (2,2).

Utility Functions   U(x 1,x 2 ) = x 1 x 2, so U(2,3) = 6 > U(4,1) = U(2,2) = 4; that is, (2,3) (4,1)  (2,2). 

Utility Functions u If –U is a utility function that represents a preference relation and – f is a strictly increasing function, u then V = f(U) is also a utility function representing. ~  ~ 

Some Other Utility Functions and Their Indifference Curves u Instead of U(x 1,x 2 ) = x 1 x 2 consider V(x 1,x 2 ) = x 1 + x 2. What do the indifference curves for this “perfect substitution” utility function look like?

Perfect Substitution Indifference Curves x1x1 x2x2 x 1 + x 2 = 5 x 1 + x 2 = 9 x 1 + x 2 = 13 All are linear and parallel. V(x 1,x 2 ) = x 1 + x 2.

Some Other Utility Functions and Their Indifference Curves u Instead of U(x 1,x 2 ) = x 1 x 2 or V(x 1,x 2 ) = x 1 + x 2, consider W(x 1,x 2 ) = min{x 1,x 2 }. What do the indifference curves for this “perfect complementarity” utility function look like?

Perfect Complementarity Indifference Curves x2x2 x1x1 45 o min{x 1,x 2 } = min{x 1,x 2 } = 5 min{x 1,x 2 } = 3 All are right-angled with vertices on a ray from the origin. W(x 1,x 2 ) = min{x 1,x 2 }

Some Other Utility Functions and Their Indifference Curves u A utility function of the form U(x 1,x 2 ) = f(x 1 ) + x 2 is linear in just x 2 and is called quasi- linear. u E.g. U(x 1,x 2 ) = 2x 1 1/2 + x 2.

Quasi-linear Indifference Curves x2x2 x1x1 Each curve is a vertically shifted copy of the others.

Marginal Utilities u Marginal means “incremental”. u The marginal utility of commodity i is the rate-of-change of total utility as the quantity of commodity i consumed changes; i.e.

Marginal Utilities u E.g. if U(x 1,x 2 ) = x 1 1/2 x 2 2 then

Marginal Utilities u E.g. if U(x 1,x 2 ) = x 1 1/2 x 2 2 then

Marginal Utilities and Marginal Rates-of-Substitution  The general equation for an indifference curve is U(x 1,x 2 )  k, a constant. Totally differentiating this identity gives

Marginal Utilities and Marginal Rates-of-Substitution rearranged is And This is the MRS.

Marg. Utilities & Marg. Rates-of- Substitution; An example u Suppose U(x 1,x 2 ) = x 1 x 2. Then so

Marg. Utilities & Marg. Rates-of- Substitution; An example MRS(1,8) = - 8/1 = -8 MRS(6,6) = - 6/6 = -1. x1x1 x2x U = 8 U = 36 U(x 1,x 2 ) = x 1 x 2 ;

Marg. Rates-of-Substitution for Quasi-linear Utility Functions u A quasi-linear utility function is of the form U(x 1,x 2 ) = f(x 1 ) + x 2. so

Marg. Rates-of-Substitution for Quasi-linear Utility Functions  MRS = - f  (x 1 ) does not depend upon x 2 so the slope of indifference curves for a quasi-linear utility function is constant along any line for which x 1 is constant. What does that make the indifference map for a quasi- linear utility function look like?

Marg. Rates-of-Substitution for Quasi-linear Utility Functions x2x2 x1x1 Each curve is a vertically shifted copy of the others. MRS is a constant along any line for which x 1 is constant. MRS = - f(x 1 ’) MRS = -f(x 1 ”) x1’x1’ x1”x1”

Monotonic Transformations & Marginal Rates-of-Substitution u Applying a monotonic transformation to a utility function representing a preference relation simply creates another utility function representing the same preference relation. u What happens to marginal rates-of- substitution when a monotonic transformation is applied?

Monotonic Transformations & Marginal Rates-of-Substitution u More generally, if V = f(U) where f is a strictly increasing function, then So MRS is unchanged by a positive monotonic transformation.