S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 21: Differential Circuits and Sense Amplifiers Prof. Sherief Reda Division.

Slides:



Advertisements
Similar presentations
Design and Implementation of VLSI Systems (EN1600)
Advertisements

Common-Gate (Base) Amplifier and Cascode Circuits
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 24: Sequential Circuit Design (2/3) Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN1600) Lecture 21: Dynamic Combinational Circuit Design Prof. Sherief Reda Division of.
Chapter 09 Advanced Techniques in CMOS Logic Circuits
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN01600) Lecture 19: Combinational Circuit Design (1/3) Prof. Sherief Reda Division of Engineering,
Introduction to CMOS VLSI Design Lecture 13: SRAM
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania ECE VLSI Circuit Design Lecture 9 - Combinational.
Design and Implementation of VLSI Systems (EN1600) Lecture 27: Datapath Subsystems 3/4 Prof. Sherief Reda Division of Engineering, Brown University Spring.
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN1600S08) Lecture12: Logical Effort (1/2) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 27: Datapath Subsystems 1/3 Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN0160) Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley]
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 14: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 28: Datapath Subsystems 2/3 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 29: Datapath Subsystems 3/3 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 20: Circuit Design Pitfalls Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 32: Array Subsystems (DRAM/ROM) Prof. Sherief Reda Division of Engineering,
Introduction to CMOS VLSI Design SRAM/DRAM
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 11: Logical Effort (1/2) Prof. Sherief Reda Division of Engineering, Brown.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 15: Interconnects & Wire Engineering Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources:
Design and Implementation of VLSI Systems (EN1600) lecture07 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 14: Interconnects Prof. Sherief Reda Division of Engineering, Brown University.
Design and Implementation of VLSI Systems (EN0160)
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 18: Scaling Theory Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 22: Sequential Circuit Design (1/2) Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 20: Combinational Circuit Design (2/3) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN1600) Lecture 23: Sequential Circuit Design (2/2) Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 25: Datapath Subsystems 1/4 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 31: Array Subsystems (SRAM) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN1600) Lecture 26: Datapath Subsystems 2/4 Prof. Sherief Reda Division of Engineering, Brown University Spring.
Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 22: Material Review Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) lecture06 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 25: Sequential Circuit Design (3/3) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN0160) lecture03 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
Design and Implementation of VLSI Systems (EN1600) lecture02 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
Introduction to CMOS VLSI Design Circuit Families.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture10: Delay Estimation Prof. Sherief Reda Division of Engineering, Brown University.
Circuit Families Adopted from David Harris of Harvey Mudd College.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 13: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 33: Array Subsystems (PLAs/FPGAs) Prof. Sherief Reda Division of Engineering,
S. Reda VLSI Design Design and Implementation of VLSI Systems (EN1600) lecture09 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 13: Logical Effort (2/2) Prof. Sherief Reda Division of Engineering, Brown.
Design and Implementation of VLSI Systems (EN0160)
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 23: Sequential Circuit Design (1/3) Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 26: Project Overview Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 17: Static Combinational Circuit Design (1/2) Prof. Sherief Reda Division.
Field-Effect Transistors 1.Understand MOSFET operation. 2. Understand the basic operation of CMOS logic gates. 3. Make use of p-fet and n-fet for logic.
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN0160) Lecture 28: Datapath Subsystems 4/4 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 18: Static Combinational Circuit Design (2/2) Prof. Sherief Reda Division.
Design and Implementation of VLSI Systems (EN1600) lecture05 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
Digital Integrated Circuits for Communication
1 EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
EE415 VLSI Design DYNAMIC LOGIC [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
EE 447 VLSI Design Lecture 8: Circuit Families.
Washington State University
Ratioed Circuits Ratioed circuits use weak pull-up and stronger pull-down networks. The input capacitance is reduced and hence logical effort. Correct.
DCSL & LVDCSL: A High Fan-in, High Performance Differential Current Switch Logic Families Dinesh Somasekhaar, Kaushik Roy Presented by Hazem Awad.
Notices You have 18 more days to complete your final project!
Modern VLSI Design 3e: Chapter 3 Copyright  1998, 2002 Prentice Hall PTR Topics n Pseudo-nMOS gates. n DCVS gates. n Domino gates.
Lecture 10: Circuit Families. CMOS VLSI DesignCMOS VLSI Design 4th Ed. 10: Circuit Families2 Outline  Pseudo-nMOS Logic  Dynamic Logic  Pass Transistor.
Introduction to CMOS VLSI Design Lecture 9: Circuit Families
Introduction to VLSI Design© Steven P. Levitan 1998 Introduction Properties of Complementary CMOS Gates.
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University
Static Logic vs. Pseudo-nMOS Static Logic includes pull-up and pull-down networks - 2n transistors for n-input function. Pseudo-nMOS - n+1 transistors.
Engineered for Tomorrow Date : 11/10/14 Prepared by : MN PRAPHUL & ASWINI N Assistant professor ECE Department Engineered for Tomorrow Subject Name: Fundamentals.
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University
Introduction to VLSI Design© Steven P. Levitan 1998 Introduction Design Technologies.
Presentation transcript:

S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 21: Differential Circuits and Sense Amplifiers Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley – Rabaey/Pearson]

S. Reda EN160 SP’07 Remember Cascode Voltage Switch Logic Cascode voltage Switch logic Adv: no static power dissipation compared to pseudo-NMOS radioed circuits differential signaling Disadv: potentially large diffusion capacitance (slowing things down) How can we cut down the diffusion capacitance?

S. Reda EN160 SP’07 Differential Split-Level Circuits Adv: The reference voltage (V DD /2+V t ) limits the swing on the internal diffusion nodes (X) to 0-V DD /2  reduces parasitic delay Disadv: Introduces series resistance does not help the delay much Brings static power back into the picture

S. Reda EN160 SP’07 Sense Amplifiers Function:  Senses small differential input signals and magnify them into larger out signals  reduces delay  Commonly used in memory in which differential bit lines have huge capacitances

S. Reda EN160 SP’07 Sense Amplifiers

S. Reda EN160 SP’07 Sample Set Differential Logic (SSDL) During sample, when Ф is low: Both the precharge and evaluation transistors are ON  static current consumed One of the internal nodes (X or Xbar) is precharged high; contention on the other During set, when Ф is high: Precharge and evaluation transistors are OFF Sense amplifier turns on pulling the lower of the two nodes to the ground

S. Reda EN160 SP’07 Enable/Disable CMOS Differential Logic When Ф is high both outputs are pulled low pull-up stack is turned off (no static power) When Ф is low output gate is enabled one output will be held high, the other pulled down sense-amp uses positive feedback to produce a faster swing The sense amplified uses cross-coupled inverters

S. Reda EN160 SP’07 Summary Done with chapter 6 (Combinational Circuit Design). Ignore Section 6.7 (Silicon-on- Insulator) Next time: material review for the exam (or better on Monday?)